Draft Genome Sequence of Trueperella pyogenes, Isolated from the Infected Uterus of a Postpartum Cow with Metritis
Goldstone, Robert J; Amos, Matt; Talbot, Richard; Schuberth, Hans-Joachim; Sandra, Olivier; Sheldon, I. Martin; Smith, David George Emslie

Published in:
Genome Announcements

DOI:
10.1128/genomeA.00194-14

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Heriot-Watt University Research Portal

Citation for published version (APA):
Draft Genome Sequence of *Trueperella pyogenes*, Isolated from the Infected Uterus of a Postpartum Cow with Metritis

Robert J. Goldstone, a Matt Amos, b Richard Talbot, c Hans-Joachim Schuberth, d Olivier Sandra, e,f I. Martin Sheldon, b David G. E. Smith a,b

Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, United Kingdom; Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom; Immunology Unit, University of Veterinary Medicine, Hannover, Germany; INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France; ENVA, Maisons-Alfort, France; Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian, United Kingdom

Trueperella pyogenes is a common commensal bacterium and an opportunistic pathogen associated with chronic purulent disease, particularly in ruminants. We report here the genome sequence of a *T. pyogenes* isolate from a severe case of bovine metritis. This is the first full record of a *T. pyogenes* genome.

Received 24 February 2014 Accepted 11 April 2014 Published 24 April 2014

Copyright © 2014 Goldstone et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license. Address correspondence to David G. E. Smith, David.G.Smith@glasgow.ac.uk.

Recently, the genus *Trueperella* was proposed to encompass 5 species previously classified as belonging to *Arcanobacterium* (1). Among these reclassified species is *T. pyogenes*, previously known as *Arcanobacterium pyogenes*, *Actinomyces pyogenes*, and *Corynebacterium pyogenes*. *T. pyogenes* has long been recognized as a mucosal membrane resident in many animal species and as an opportunistic pathogen (2). *T. pyogenes* is particularly associated with suppurative infections, such as mastitis, septic arthritis, liver abscessation, pneumonia, endometritis, and metritis. *T. pyogenes* is recognized as a key etiological agent in bovine endometritis and abscessation, pneumonia, endometritis, and metritis.

M. Tetraena is a common commensal bacterium and an opportunistic pathogen associated with chronic purulent disease, particularly in ruminants. We report here the genome sequence of a *T. pyogenes* isolate from a severe case of bovine metritis. This is the first full record of a *T. pyogenes* genome.

Among these reclassified species is *T. pyogenes*, previously known as *Arcanobacterium pyogenes*, *Actinomyces pyogenes*, and *Corynebacterium pyogenes*. *T. pyogenes* has long been recognized as a mucosal membrane resident in many animal species and as an opportunistic pathogen (2). *T. pyogenes* is particularly associated with suppurative infections, such as mastitis, septic arthritis, liver abscessation, pneumonia, endometritis, and metritis. *T. pyogenes* is recognized as a key etiological agent in bovine endometritis and abscessation, pneumonia, endometritis, and metritis. This is the first full record of a *T. pyogenes* genome.

© 2014 Goldstone et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license. Address correspondence to David G. E. Smith, David.G.Smith@glasgow.ac.uk.

Recently, the genus *Trueperella* was proposed to encompass 5 species previously classified as belonging to *Arcanobacterium* (1). Among these reclassified species is *T. pyogenes*, previously known as *Arcanobacterium pyogenes*, *Actinomyces pyogenes*, and *Corynebacterium pyogenes*. *T. pyogenes* has long been recognized as a mucosal membrane resident in many animal species and as an opportunistic pathogen (2). *T. pyogenes* is particularly associated with suppurative infections, such as mastitis, septic arthritis, liver abscessation, pneumonia, endometritis, and metritis. *T. pyogenes* is recognized as a key etiological agent in bovine endometritis and abscessation, pneumonia, endometritis, and metritis.

Recently, the genus *Trueperella* was proposed to encompass 5 species previously classified as belonging to *Arcanobacterium* (1). Among these reclassified species is *T. pyogenes*, previously known as *Arcanobacterium pyogenes*, *Actinomyces pyogenes*, and *Corynebacterium pyogenes*. *T. pyogenes* has long been recognized as a mucosal membrane resident in many animal species and as an opportunistic pathogen (2). *T. pyogenes* is particularly associated with suppurative infections, such as mastitis, septic arthritis, liver abscessation, pneumonia, endometritis, and metritis. *T. pyogenes* is recognized as a key etiological agent in bovine endometritis and abscessation, pneumonia, endometritis, and metritis. This is the first full record of a *T. pyogenes* genome.

Resistance to antibiotics often used in veterinary practice is common in *T. pyogenes*. A gene encoding resistance to tetracycline (*tetW*) was identified in the genome of strain MS249. Although resistance to macrolides, chloramphenicol, and β-lactam antibiotics among *T. pyogenes* strains has been reported (16–20), no specific resistance elements were identified in strain MS249, consistent with its sensitivity to these antibiotics.

This is the first reported genome sequence for *T. pyogenes*. This sequence will be used to extend the understanding of this novel bacterial opportunistic pathogen and form the basis for systematic studies of its pathogenicity and physiology, as well as to perform a comparative genomic analysis among *Actinobacteria*.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. JALQ0000000. The version described in this paper is version JALQ01000000.

ACKNOWLEDGMENTS. This work is a component of the project "Integrated systems approach for preventing uterine disease in dairy cattle (iPUD)," funded by BBSRC through the EMIDA ERA-NET initiative, project reference BB/1017240/1 and BB/BB/1017283/1.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. JALQ0000000. The version described in this paper is version JALQ01000000.

ACKNOWLEDGMENTS. This work is a component of the project "Integrated systems approach for preventing uterine disease in dairy cattle (iPUD)," funded by BBSRC through the EMIDA ERA-NET initiative, project reference BB/1017240/1 and BB/BB/1017283/1.
REFERENCES

