Chip-to-chip quantum photonic interconnect by path-polarization interconversion

1 Centre for Quantum Photonics, H. H. Wills Physics Laboratory & Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, United Kingdom.
3 National Institute of Information and Communications Technology (NICT), 588-2 Iwaoaka, Kobe 651-2492, Japan.
4 National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan.
5 School of Engineering, University of Glasgow, G12 8QQ, United Kingdom.

*Corresponding author: mark.thompson@bristol.ac.uk

Received XX Month XXXX; revised XX Month, XXXX; accepted XX Month XXXX; posted XX Month XXXX (Doc. ID XXXXX); published XX Month XXXX

Integrated photonics has enabled much progress towards quantum technologies. Many applications, e.g., quantum communication, sensing, and distributed cloud quantum computing, require coherent photonic interconnection between separate on-chip subsystems. Large-scale quantum computing architectures and systems may ultimately require quantum interconnects to enable scaling beyond the limits of a single wafer, and towards multi-chip systems. However, coherently connecting separate chips remains a challenge, due to the fragility of entangled quantum states. The distribution and manipulation of entanglement between multiple integrated devices is one of the strictest requirements of these systems. Here, we report the first quantum photonic interconnect, demonstrating high-fidelity entanglement distribution and manipulation between two separate photonic chips, implemented using state-of-the-art silicon photonics. Path-entangled states are generated on one chip, and distributed to another chip by interconverting between path and polarization degrees of freedom, via a two-dimensional grating coupler on each chip. This path-to-polarization conversion allows entangled quantum states to be coherently distributed. We use integrated state analyzers to confirm a Bell-type violation of $S=2.638±0.039$ between the two chips. With further improvements in loss, this quantum photonic interconnect will provide new levels of flexibility in quantum systems and architectures. © 2014 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (270.5565), (270.5585) Quantum information and processing; (130.0130) Integrated optics.

http://dx.doi.org/10.1364/optica.99.099999

1. Introduction

Further progress towards quantum communication [1, 2], sensing [3] and computing [4, 5] will greatly benefit from a “quantum photonic interconnect” (henceforth QPI): an inter-/intra-chip link—e.g., in optical fiber or free-space—capable of coherently distributing quantum information and entanglement between on-chip sub-systems within a single complete quantum system. The significance of quantum interconnectivity was first highlighted by Kimble [1]. Here we study a chip-based interconnect solution, which will be essential in many future applications and provide substantial architectural flexibility. Secure quantum key distribution and quantum communications [6–8], and distributed and even cloud quantum computing [9–11], for example, will require interconnected on-chip subsystems in practice. Precise quantum sensing will gain more flexibility and versatility from on-chip generation and measurement of entanglement, with the interaction with the sample occurring remotely, in a different medium or location (e.g., chip, fiber, and free-space [12–14]). Quantum computing will greatly benefit from this QPI through architectural simplifications [15–17]; easier integration of materials, and platforms optimized for the performance of source [18, 19], circuit [20–28], detector [29, 30], and other on-chip devices [31, 32]; and the inclusion of off-chip devices, such as optical delays and memories. Ultimately, large-scale integrated quantum systems and devices may even exceed the area of a single wafer or require interconnects for architectural reasons.

A QPI must coherently and robustly transmit a qubit state of $|0\rangle±|1\rangle$ between subsystems [1], in which the relative phase information must be maintained, as in classical coherent optical communication protocols [33]. The quantum photonic interconnect must be capable of coherently interconverting between the preferred encodings in the platforms and media through which it connects [1, 34]. Perhaps, the most demanding requirement for a quantum interconnect is the preservation of high-fidelity qubit entanglement throughout manipulation, conversion, and transmission processes within the full chip-based system. Path-encoding [20–25] in two waveguides is the most common and natural choice for the encoding of qubits on-chip. However, encoding qubits in two separate free-space fiber links needs sub-wavelength path-length matching, and fast active phase stabilization. Polarization [6–10], spatial-mode [35, 36], or time-bin [37] encoding is typical for off-chip qubit transmission and distribution. For example, the state of polarization is robust in free-space, and in optical fiber (birefringence-induced fluctuation can be actively corrected on slow time scales [38]). Already there have been demonstrations of many important features of this quantum interconnect components, e.g. on-chip entanglement...
 generation and manipulation [20–26, 39, 40], photon detection [29, 30], interfacing of different degrees of freedom [41–43], and multi-chip links [31, 32]. However, to date there has been no demonstration of a full QPI system capable of distributing qubit entanglement across two or more integrated quantum photonic devices.

Here, we demonstrate a high-fidelity QPI. Telecom-band entangled photons are generated, manipulated and distributed between two integrated silicon photonic chips linked by a single mode optical fiber. These devices and chips were fabricated using state-of-the-art silicon photonics to enable and monolithically integrate all key capabilities required to demonstrate the quantum interconnect. Maximally path-entangled qubit states are generated and manipulated on-chip. These states are distributed across two silicon chips by transmitting one qubit from one chip to the other via a fiber link. To preserve coherence across two chips, we used two-dimensional grating coupler devices [40, 41] to interconvert between path (on-chip) and polarization (in fiber) degrees of freedom. We demonstrate this process with high fidelity. Each qubit is analyzed in its respective chip using thermal phase shifters to form arbitrary integrated state analyzers. We implement a rigorous test of entanglement—confirming a strong Bell-type inequality violation of 16.4σ and 15.3σ. Together with further improvements in loss, this approach will facilitate new quantum technologies and applications that rely on, or benefit from QPIs.

2. Experiment

A. Experimental setup

Our chip-to-chip QPI system is shown schematically in Figs. 1(a) and (b). This system generates path-entangled states on chip-A and coherently distributes one entangled qubit to chip-B, via an optical fiber link.

A filtered 50-mW continuous-wave pump (λ=1555.5 nm) is coupled into chip-A and split into two paths using a multimode interference coupler (MMI) with a -50/50 splitting ratio [44] (Fig. 1(d)). Each path is connected to a photon-pair source. One photon pair is produced in superposition between these two sources, which, after post-selection on measuring a coincidence, yields the photon-number entangled state $(|1⟩|0⟩, 0⟩, 0⟩, |0⟩|1⟩+)/\sqrt{2}$, where $θ_B$ is the phase after the two sources [22]. Each source produces signal-idler photon pairs (λ=1550.7 nm, λ=1560.3 nm) via spontaneous four-wave mixing (SFWM, [19]) inside a 20-mm-long spiraled waveguide (Fig. 1(c)). Signal and idler photons are probabilistically separated by two demultiplexing MMI couplers, and post-selected by two off-chip spectral filters (with a 25% success probability; see Supplement). These modes are then swapped using a waveguide crossing to yield a path-entangled qubit-basis Bell state $|Φ⟩± = (|00⟩± |11⟩)/\sqrt{2}$ (when $θ_B$ equals to $(n+1/2)π$ or $nπ$ for an integer n, with the subscripts referring to signal or idler photons).

The signal qubit is manipulated and measured on the same chip (chip-A) by a single qubit measurement stage $A(θ_M, θ_M)$. This consists of a thermo-optically driven Mach-Zehnder interferometer with an additional thermal phase shifter (Fig. 1(d)). The path-encoded idler qubit is directed to an on-chip path-to-polarization converter (PPC). This device, described in more detail in the next section, coherently interconverts the qubit from an on-chip path encoding to an in-fiber polarization encoding. After transmission across the fiber link, chip-B reverses this process, converting the polarization-encoded qubit back to on-chip path encoding, via a second PPC. There, it is measured by a second single qubit measurement stage $B(θ_M, θ_M)$ (Fig. 1(b)). In our experiment, the QPI consists of the fiber link bracketed by these two PPCs.

The polarization in the fiber can drift over time due to changes in environmental conditions (stress, vibrations, temperature, etc.). Due to the relatively short length of fiber used in this experiment (10 m), the fiber link was used without any control of its environment, other than to fix it to our optical table. Longer links may need active phase (i.e. polarization) compensation and control [38].
After configuring the measurements on the two chips, photon pairs were detected by two fiber-coupled superconducting nanowire single photon detectors (SNSPDs) with ~50% efficiency and ~800 Hz dark counts [45], after passing through relatively narrow 1.2-nm spectral band-pass filters. Finally, photon coincident counts were recorded using a time interval analyzer. At the output of chip-A, ~500 photon pairs per second were measured, dropping to ~12 pairs per second after the idler photon had additionally traversed the QPI and chip-B. Ultimately, signal and idler photons had experienced 18 dB and 34 dB total attenuation, respectively.

B. Path-polarization interconversion

The PPC converts the two orthogonal polarization modes of the fiber into the fundamental transverse-electric (TE) modes of two on-chip waveguides. The stronger confinement of the TE mode in our silicon waveguide geometry (500nm×220nm) facilitates more efficient nonlinear optical photon-pair sources [39], and a higher integration density. Accordingly, we designed the PPC to couple into the TE mode of the silicon waveguide.

Our PPC is implemented using a 2D grating coupler (see Fig.1(e)), essentially formed by superposing two 1D grating couplers at right angles [40, 41]. In this way, the polarization state of the SMF fiber-transmitted photon is determined by the two-waveguide on-chip state, and vice versa, achieving path-polarization interconversion. Further details are provided in the Appendix and Supplement.

To verify the PPC coherent mapping, we prepared arbitrary bright-light polarization states using bulk optical components and coupled them into the on-chip receiver (see Fig. 2(a)). The PPC allowed us to convert the polarization states into path-encoded states, which we analyzed on-chip performing quantum state tomography [34, 46]. We prepared a set of six polarization states \(|\rho\rangle \) in bulk optics, and measured the corresponding on-chip path states \(|\rho_{\text{path}}\rangle \); these states are respectively shown as Bloch (or Poincare) vectors in Figs. 2(b) and (c). We provide the full density matrix data of these states in the Supplement; these data correspond directly with the plotted Bloch vectors. The overlap between the input states and measured states can be described by the state fidelity, which is defined as \(F_{\text{state}} = \text{Tr}(|\rho_{\text{path}}\rangle \langle \rho_{\text{path}}|) \). We find a mean state fidelity of the six states of 98.82±0.73%.

We also fully quantify the PPC process using a quantum process tomography [34]. This can be mathematically described by a process matrix \(\chi \) as defined by \(\rho_{\text{path}} = \sum_{m} (E_{m} \rho_{\text{on}} E_{m}^{\dagger}) \), where \(E_{m} \) are the identity \(I \) and Pauli matrices \(X, Y, \) and \(Z \) respectively. By injecting the \(\rho_{\text{on}} \) states into the PPC and measuring the \(\rho_{\text{path}} \) states, we estimated the process fidelity.
matrix χ of the PPC, shown in Fig. 2(d). We find a high process fidelity of 98.24±0.02%, defined as $F_{\text{proc}} = 1/\chi_{\text{ideal}}$, where χ_{ideal} is the ideal process matrix with unit (I, I) component. X, Y, and Z amplitudes of the matrix χ represent the probabilities of a bit-flip or phase-flip error in the PPC interconversion. The process fidelity is directly related to the device cross-talk, which we estimate as 18 dB (98.4%). PPC designs with improved cross-talk (and loss) have been demonstrated [47,48].

C. Entanglement correlation fringes

Our first observation of entanglement distribution between the two chips took the form of nonlocal fringes. We configured the chip-A to produce entangled photons. These photons were collected at ports D1 and D2 and routed to the detectors. Through a continual scanning of θ_{det}, we observed χ (classical) and χ_2 (quantum) interference fringes with a high visibility (defined as $V = 1 - N_{\text{corr}}/N_{\text{un}}$) of 99.99±0.01% and 99.36±0.17%, respectively (Fig. 3(a)). The high visibility of this phase-doubled fringe is a clear signature of the high-quality photon-number entanglement produced inside the chip-A [22,12]. These high visibilities arise from well-balanced MMI couplers [44] and from a good spectral overlap between the two sources within the narrow bandwidth of the signal and idler filters. The photon-number entangled state evolves into the path-entangled Bell states $|\Psi^+\rangle$ or $|\Psi^-\rangle$, depending on the setting of θ_{det} (as described previously).

The entangled-qubits were then separated and distributed, with the signal qubit kept on chip-A and the idler sent via the QPI to chip-B. We measured correlation fringes across the two chips by continuously varying θ_{det} and setting θ_{g} variously at 0, $\pi/2$, π, and $3\pi/2$, while collecting coincidences between ports D1 and D3. Fig. 3(b) and Fig. 3(c) respectively show these fringes for the two Bell states $|\Psi^+\rangle$ and $|\Psi^-\rangle$. These experimental results are in good agreement with the theoretical model $\cos^2(\theta_{av} + \theta_{\text{det}})/2$ [49], with a small phase offset due to device calibration. These fringes exhibit a mean visibility of 97.63±0.39% and 96.85±0.51%, respectively, above the quantum threshold of $\sqrt{2}$ (71%) required to violate the Bell inequality [50]. These data show that entanglement is produced on chip-A and faithfully transferred to chip-B.

D. Bell-CHSH measurement

A strict test of the existence and level of entanglement distributed between the two chips is the Bell-CHSH test (Clauser-Horne-Shimony-Holt) [51, 52]. The CHSH inequality is defined as:

$$S = |\langle A_1 B_1 + A_2 B_2 + A_1 B_2 - A_2 B_1 \rangle| \leq 2$$

where A_1 and B_1 briefly denote the projectors $A(0, \theta_{av})$ and $B(0, \theta_{av})$ on two chips. Normalized correlation coefficients (A_1, B_1) were measured when θ_{av} on the chip-A was chosen to be 0, $\pi/2$, π, and $3\pi/2$, and θ_{av} on the chip-B was simultaneously chosen to be $\pi/4$, $3\pi/4$. Full data of (A_1, B_1) is provided in Table 1. Substituting them into equation (1), we obtained the directly measured S_{bell} values of 2.638±0.039 and 2.628±0.041 for the two Bell states $|\Psi^+\rangle$ and $|\Psi^-\rangle$, respectively. These S_{bell} parameters violate the Bell-CHSH inequality by 16.4 and 15.3 standard deviations, respectively, strongly confirming that the two photons after distribution are highly entangled. Moreover, we also estimate the maximally achievable S_{max} value of 2.761±0.011 and 2.739±0.015 for the $|\Psi^+\rangle$ or $|\Psi^-\rangle$ states, from the mean visibility of the entanglement correlation fringes (Fig. 3(b) and Fig. 3(c)) according to $S_{\text{max}} = 2\sqrt{2}/\sqrt{V}$. [50]. Fig. 4 illustrates the good agreement between S_{bell} and S_{max}, confirming the high-performance of the chip-to-chip QPI.

Several possible explanations exist for the small discrepancy between the S_{max} and S_{bell} values. Firstly, S_{max} strictly provides an upper bound on S_{bell}, which is saturated only when the Bell-CHSH measurement projectors align with the state in question, and when the detection efficiencies are the same for all measurements [53]. Miscalibration of the measurement projectors, or fluctuations in the fibre-chip coupling (see Supplementary Fig. S4) could both reduce S_{bell}.

3. Conclusion

We have demonstrated high-fidelity entanglement generation, manipulation, interconversion, distribution, and measurement across two separate integrated photonics devices, achieving the first chip-to-chip quantum photonic interconnect. The use of path-polarization interconversion preserves coherence across the fully interconnected chip-fiber system.

Our system could be improved in several ways. The efficiency and fidelity [47, 48] of this interconnection process can be improved, and other off-chip encodings (e.g. orbital angular momentum [54, 55] or time bins [56]) may further enrich this quantum interconnectivity. The spiral photon-pair sources used here require no tuning to achieve spectral overlap, whereas optical microring resonators facilitate higher photon flux, produce spectrally uncorrelated photons [23, 57], and have a smaller footprint, but require careful tuning. Finally, the coupling fluctuations we observed could be avoided by optically packaging the chip, enabling a more robust and portable chip-to-chip quantum system.

A robust QPI will facilitate new applications of quantum technology. This chip-to-chip quantum interconnectivity could be used for short-distance secret key sharing between bank and user, for example. Remote quantum sensing could be made possible by this system, allowing the quantum metrology of remote, possibly birefringent analytes. Chip-to-chip interconnectivity would bring architectural flexibility to the design of linear optical quantum computers, potentially allowing quantum computation to be distributed over chip-based subsystems. In addition, the use of silicon technology allows large-scale integration [28, 58, 59] and compatibility with microelectronics and telecommunications infrastructure [60], and offers ability to monolithically integrate photon sources [19, 23], circuits [22, 28], and detectors [29, 30]. Our work opens the door to multi-chip integrated

| θ_{av}, θ_{det} | $|\Psi^+\rangle$ (A_1, B_1) | $|\Psi^-\rangle$ (A_1, B_1) |
|-----------------------------|-------------------------|-------------------------|
| $(0, \pi/4)$ | 0.601±0.021 | 0.673±0.021 |
| $(0, 3\pi/4)$ | -0.692±0.018 | -0.589±0.023 |
| $(\pi/2, \pi/4)$ | 0.692±0.019 | -0.652±0.020 |
| $(\pi/2, 3\pi/4)$ | 0.654±0.020 | -0.714±0.020 |

Fig. 4. Verification of chip-to-chip entanglement distribution and quantum photonic interconnect. The two Bell entangled-states $|\Psi^\pm\rangle$ were distributed across the two silicon chips. The S parameters were obtained using two methods. Green dotted columns are the directly measured S_{bell} by substituting correlation coefficients (Table 1) into Eq. (1). Pink columns are the maximal achievable S_{max} estimated from the mean visibility of correlation fringes in Fig. 3. The S_{bell} and S_{max} parameters are in good agreement. Black and blue dashed lines denote the classical and quantum boundary. These results confirm the high level of entanglement after distributed across the two chips, and the high quality of the quantum photonic interconnect. Each coincidences measurement was accumulated for 60 s. Accidental coincidences are subtracted, and error bars (±1 s. d.) are given by Poissonian statistics.
quantum photonic systems, capable of robustly distributing and transmitting quantum information among chips.

Appendix A: Devices design and fabrication.

Chip-A and chip-B respectively have a device footprint of 1.2×0.5 mm² and 0.3×0.05 mm². These devices were fabricated on the standard silicon-on-insulator wafer with a 220 nm silicon layer and a 2 μm buried silica oxide layer. The MMI couplers were designed as 28 μm × 27 μm to get a nearly balanced splitting ratio (Fig.1d). MMs can offer a large bandwidth and large fabrication tolerance. We used the same MMs design as Ref [12] and we both observed high-visibility classical and quantum interference, reflecting its excellent reproducibility. Spiraled waveguide sources with a 2 cm length were used to create photon-pairs. The 1D grating couplers consist of a periodic 315 nm silicon layer with a 630 nm pitch. The 2D grating couplers include 10 μm × 10 μm hole arrays with a 390 nm diameter and 605 nm pitch. Resistive heaters with a 50 μm length were designed and formed by a Ti/TiN metal layer. The devices were fabricated using the deep-UV (193 nm) lithography at LETI-ePIXfab. Silicon waveguides were 220 nm fully etched, while grating couplers were 70 nm shallow etched. The devices were covered by a 1.6 μm silica oxide layer.

Appendix B: Devices characterizations.

Optical accesses and electric accesses were independently controlled on two chips (Supplementary Fig. S1). Optical access was achieved using a 50

\[\mu \text{m} \times 27 \mu \text{m} \]

to get a nearly balanced splitting ratio (Fig 1d). MMs can offer a large bandwidth and large fabrication tolerance. We used the same MMs design as Ref [22] and we both observed high-visibility classical and quantum interference, reflecting its excellent reproducibility. Spiraled waveguide sources with a 2 cm length were used to create photon-pairs. The 1D grating couplers consist of a periodic 315 nm silicon layer with a 630 nm pitch. The 2D grating couplers include 10 μm × 10 μm hole arrays with a 390 nm diameter and 605 nm pitch. Resistive heaters with a 50 μm length were designed and formed by a Ti/TiN metal layer. The devices were fabricated using the deep-UV (193 nm) lithography at LETI-ePIXfab. Silicon waveguides were 220 nm fully etched, while grating couplers were 70 nm shallow etched. The devices were covered by a 1.6 μm silica oxide layer.

All thermal-driven phase shifters were controlled using homemade electronic controllers. Wire bonding technology was used to contact heaters’ transmission lines. Optical power was recorded as a function of electric power added on heaters. The optical–electric power contour was measured to be larger than 20 dB and 18 dB, respectively. Excess loss of 1D and 2D grating couplers were about -4.8 dB and -7.6 dB at peak wavelengths, respectively (see Supplementary Fig.S2). We made estimation of losses from different contributors in the full system: -6 dB from off-chip filters, -6 dB from SSNPDs, -9.5 dB from 1D grating couplers, -15.2 dB from 2D grating couplers, -6 dB from demultiplexing MMs, and -8 dB from MMs loss and propagation loss in waveguide. Totally, signal and idler photons respectively experienced -18 dB and -34 dB attenuation. We tested several copies of the devices and they all exhibited similar performance.

Acknowledgment. We thank G. D. Marshall and W. A. Murray for experiment assistance and C. Erven, T. Rudolph, A. Laing, P. J. Shadbolt, J. C. F. Matthews, P. Turner, L. Kling, D. Dai, Y. Ding, and X. Cai for useful discussions.

See Supplement 1 for supporting content.

REFERENCES
