Management and environmental risk study of the physicochemical parameters of ballast water
Ghods, Nosaibeh Nosrati; Ghadiri, Mehdi; Fruh, Wolf-Gerrit

Published in:
Marine Pollution Bulletin

DOI:
10.1016/j.marpolbul.2016.09.062

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in Heriot-Watt University Research Portal

Citation for published version (APA):
Management and environmental risk study on the physicochemical parameter of ballast water

Nosaibeh Nosrati-Ghods¹, Mehdi Ghadiri²*, Wolf-Gerrit Früh¹

¹School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom

²Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran, Iran

*Corresponding author: M_ghadiri10@yahoo.com

Abstract

Shipping is a vital industry for the global economy. Ships’ stability, provided by ballast water, is a crucial factor for cargo loading and unloading processes. Ballast water treatment has practical significance according to environmental issues, ecosystem, and the health of human beings, since ships should discharge this water into environment before loading their cargos. This work brings together the common methods for ballast water management – exchange, heating, filtration, ultrasonic, ultraviolet, chemicals, and gas super saturation – to select the best method among common methods. This study compares water temperature, salinity, dissolved oxygen, polycyclic aromatic hydrocarbons (PAHs), and heavy metals (Co, Cr, Ni, Pb) for ballast tanks of selected ships versus the recipient port environment in the Persian Gulf as a case study. Whether it is more appropriate to exchange ballast water in the ocean and/or treat it on board to prevent inadvertent effects on the environment’s physicochemical condition, is related to vessel characteristics, legislation and the environmental condition. Ecological risk study showed that amounts of PAHs and salts in ballast water are close to that of seawater, but the value of Cr (2.1 mg/litre) and Ni (0.029 mg/litre) in ballast water is higher than seawater (1 and 0.004 mg/litre, respectively).

Keywords: Ballast Water, Management, Ecological Risk Study, Physiochemical condition
1- Introduction

Shipping is a vital industry for the global economy. Ships’ stability is an important factor during the cargo loading and unloading processes. Stability of ships at sea can be maintained by ballast water. Ships carry approximately 10 to 12 billion tons of ballast water across the oceans every year in which thousands of aquatic species, as well as heavy metals, are being transferred (Tootsie, 2002). Ballast water treatments have practical significance for environmental and health concerns for human beings, since ships take in ballast water containing different physicochemical parameters - temperature, salinity, dissolved oxygen (DO), polycyclic aromatic hydrocarbons, heavy metals (Co, Cr, Ni, Pb) -, transfer them in transport and discharge this water before loading their cargos.

It is impossible to neglect the harmful consequences of physicochemical parameters of ballast water as in the case of heavy metal which has negative effects on aquatic organisms suppressing growth in marine life (Govind and Madhuri, 2014). Chinese and Russian industrial pollution such as heavy metals in the Amur River have devastated fish stocks (Sharma, 2009). While being toxic to marine life, polycyclic aromatic hydrocarbons (PAHs), are very difficult to clean up, and last for years in the sediment and marine environment (Panetta, 2003).

After identifying the adverse effect of transferring ballast water by ships across the world in 2004, the International Maritime Organization (IMO) accepted the International Convention on ballast water management for a safe and healthy environment (David and Gollasch, 2008). The Convention was set to come into force 12 months after being ratified by 30 states that cover 35 percent of the world merchant shipping tonnage. As of August 2, 2016, the convention has been ratified by 51 nations but their contribution to the world merchant shipping tonnage is only 34.87%. Hence, it has not come into force so far (International Maritime Organization, 2016).

As the Persian Gulf has shallow water, it has a high marine biodiversity and high temperature (Ngoka, 2015). The region of the Gulf is almost 241,000 square kilometer, surrounded by Iran,
Qatar, Bahrain, Saudi Arabia, Oman, United Arab Emirates (UAE), Kuwait and Iraq. The marine life in this Gulf includes sea turtles, marine birds, dugongs, whales, dolphins and over 500 fish species (Hellyer and Aspinall, 2005). Many of these species are native and highly dependent on the ecosystem of the Gulf (UNEP, 1999).

Several studies considered possible solutions to mitigate effects of ballast water on seawater (Bai et al., 2005; Balasubramanian et al., 2008; Bax et al., 2003; Costello et al., 2007; David and Gollasch, 2015; Delacroix et al., 2013; Dunstan and Bax, 2008; Firestone and Corbett, 2006; Gavand et al., 2007; Gonçalves and Gagnon, 2012; Liltved et al., 2011; Nanayakkara et al., 2011; Romero-Martínez et al., 2014; Stehouwer et al., 2015; Tsolaki and Diamadopoulos, 2010; Werschkun et al., 2014; Williams and Grosholz, 2008; Zhang et al., 2005), but few of them considered effects of ballast water management on the physiochemical factors of water discharged into the port environment.

This study investigated the effect of common ballast water management on seawater by assessing the effects of chemical, physical, mechanical treatments and exchange on the physiochemical factors of the ballast water discharged into the port environment and select the best of them. The choice of parameters to be investigated was determined by those known to affect ballast water management, namely water temperature, salinity, dissolved oxygen, PAHs and heavy metals in ballast water discharged into the port versus the recipient port environment.

Before introducing our study in Section 3, common methods for ballast water management methods are described in the following section.

2- Ballast water management

Observing appropriate ballast water management is necessary to avoid problem through the invasion of species carried by ballast water. The methods of ballast water handling are ballast water
exchange based on D-1 standard and ballast water treatment based on D-2 standard (Germanischer Lloyd SE, 2013). The D-1 standard for water exchange specifies that 95% of ballast water should be exchanged or, when pumping is being used, that every tank has been pumped three times. The D-2 Standard for ballast water treatment is based on maximum concentration of specified organisms (Gollasch, 2006).

2-1- Ballast Water Exchange (BWE)

Ballast water exchange is the most practical and prevalent method because the translocation of species cannot happen through this method (David and Gollasch, 2008). The three methods of exchanging ballast water are: i) to discharge the tanks and subsequently refill, ii) to discharge and refill simultaneously, and iii) to release water through the bottom of ships and simultaneously pump water into the tank that is known as the Dilution method (Gollasch, 2004). Despite the fact that BWE would be the most cost-effective and time-saving, it is impossible to ignore the following risks to the vessel and crew with regard to ballast water exchanges: loss of stability; over stress; sloshing loads; torsional loads; reduction in maneuverability; reduction in draughts; Icing; occupational hazards and fatigue of crew; excessive forces on securing arrangements of containers or special cargo.

2-2- Ballast Water Treatments (BWTs)

Ballast water treatment is divided into three major categories (Airahuobhor, 2010), mechanical, physical and chemical treatments. A single method usually cannot meet the requirements of the International Maritime Organization in a way that is safe, effective and economic (Wu et al., 2011). Thus, a combining of two or more treatment systems of ballast water is usually more practical and efficient. Some of these are introduced in more detail in the following section.
2-2-1- Mechanical and physical treatment:

Of mechanical treatments, filtration is effective in removing cloudy particles, viruses, bacteria and parasites (Nasser et al., 2002; Tang et al., 2009) or hydrocyclone technology (Lloyd’s Register Group, 2010). Exposing microorganisms to ultraviolet radiation is a practical and effective way to inactivate microorganisms (Tang et al., 2009). However, when particles are suspended, the effectiveness of ultraviolet is diminished through the attenuation of the radiation. For that reason, a combination of filtration and ultraviolet can be used (Perakis and Yang, 2003; Tang et al., 2009). Another physical method is to apply ultrasound (Holm et al., 2008). Zooplankton and phytoplankton also decrease when heated water is added to the ballast water tanks in ships (Acomi et al., 2012; Avenue and Wales, 1999; Bolch and Hallegraeff, 1993; Hallegraeff et al., 1997; Quilez-Badia et al., 2008). Ozone is widely used for water disinfection but maritime microorganisms have shown resistance (Liltved et al., 2006) and sometimes it causes corrosion (Oemcke and Hans van Leeuwen, 2005; Wu et al., 2011). In this case TiO$_2$ photo catalysis can be been added to the ozone because it is an effective and safe way to destroy bacteria (Benabbou et al., 2007; Yao et al., 2007).

2-2-2- Chemical treatments

Electrochemical oxidation has been applied in recent years over a different range of industrial wastewaters, as well as in disinfection of drinking, swimming pool and seawater. For example, sodium hypochlorite has been shown to be an effective way to destroy bacteria and viruses (Tsolaki et al., 2010). The gas super saturation method causes bubble formation and results in hemorrhagic effects to kill organisms (Takahashi et al., 2001). The use of chemical biocides, in particular seakleen (Granitto, 2006; Stimson et al., 2010), peraclean and the chlorine dioxide biocide vibrex, as a ballast water treatment has restrictions due to value, biological effectiveness and possible
residual toxicity of the discharged ballast water, but Peraclean Ocean appears to have the most potential (de Lafontaine et al., 2008; Gregg and Hallegraeff, 2007). Peraacetic acid (PAA) has an ability to sterilize process vessels and tanks to control microbial growth (Profaizer et al., 1997). Chlorine dioxide destroys microorganisms by disruption of the transfer of nutrients through the cell wall, not by disruption of the metabolic process. Stabilized chlorine dioxide is ClO₂ buffered in an aqueous solution (LENNTECH, 2014). Although chlorine dioxide has a half-life of 6–12 hours, it can be safely discharged within 24 hours based on suppliers (Lloyd’s Register Group, 2007).

3- Materials and methods

3-1- Location of study and surveyed material

Khark Island is situated in the northern part of the Gulf. The island has a more or less triangular shape, is about 4 miles in length with an average of 2 miles in width. Khark Island’s oil terminal is one of the biggest oil terminals in the world. Khark Island provides a seaport for exporting petroleum and oil products (Norouzifard, 2011). There are two different types of ports in Khark Island (Norouzifard, 2011): i) for oil tanker belows 500 000 dead weight (DWT); and ii) for vessels above 500 000 dead weight (DWT).

3-2- Survey of oil tankers

More than 796 ballast water reports of oil tanker by pilot office of Ports & Maritime Organization in the Gulf, collected over an eight month period from 31.10.2012 to 25.06.2013, was checked, of which 356 were without ballast water on boards. The remaining 440 oil tankers carried ballast water and discharged 617,625,754 cubic meters into the Gulf from other ports. The origin and quantity of ballast water discharged by these 440 oil tankers are listed in Table 1.
ballast water report forms, the most common last port before reaching the port in the south of Iran were, in order of number of oil tankers, UAE, India, Saudi Arabia, and Japan as shown in Table 1.

Table 1: Detail on origin of oil tanker and the amount of Ballast Water discharged (Reports form of investigation of Pilot Office of Ports & Maritime Organization in Khark Island)

3-3- Oil tankers selected for analysis

In this project, 14 oil tankers were selected based on their type of management and inspected. Out of these, samples for the physicochemical analysis were taken from 9 suitable vessels of various types ranging from small cargo vessels with dead weight of <1,000 tons to Very Large Crude Carriers (VLCCs) of >300,000 tons dead weight. Their combined quantity of ballast water was found to be 600,382 tons and the origin of most of them were Asian countries, and their respective capacity, type of management, and port of origin is shown in Table II. Both treatment and exchange were done in oil tankers number 8 and 9 from Japan and China respectively. Two other selected oil tankers -number 7 from Taiwan and number 6 from UAE- have got only treatment without exchange on their ballast water. As shown on Table 2, the rest of the oil tanker exchanged the ballast water three times in the ocean.

Table 2: Specification of 9 oil tankers sampled in Khark Island

3-4- Sampling of Ballast Water

Standard ballast water system methods based on the protocol of MEPC. 173 (58) were used for sampling and analysis of ballast water, which is one of the ways to assess the ballast water management requirements (International Maritime Organization, 2008). Sampling can be divided
into in-tank and in-line sampling. In-tank sampling points provide a way for ballast water to access directly from a tank either via ballast tank manholes, sounding or air pipes. In-line sampling points comprise of the ships ballast water pumps and ship’s pipe work (Consult, 2013) and has been used in a number of previous studies (David and Perković, 2004; David et al., 2007; Gollasch, 1996; Rosenthal et al., 1999). This project made use of the in-tank sampling method, in which three samples were taken from a manhole.

The ballast water was pumped from the on-board tanks with a speed of 2 litre per minute through pipes with a net diameter of 25 centimeters into a Point-Source Sampler through a valve with an opening of 3 millimetres. The time needed to fill-up the sampler was approximately 1 minute. From this, a mesh of 20 microns in the square dimension, which results in a diagonal diameter of 50 microns, was used to filter about 300 litre of ballast water. This was then distributed for the analysis into 250 ml beakers before buffered formalin 37% was added. These samples were then stored in a dark place until the analysis in the laboratory. Sampling of the ballast water for oil tankers of 1, 2, 3, 8, and 9 had been done in spring, while the sampling of oil tankers with the number of 4, 5, 6, and 7 had been done in summer as it is mentioned in Table 2.

3.5- Sampling of seawater

Samples of seawater were taken from different parts of the Gulf three times in different seasons. This sampling was done with a speed of 1.6 litre per minute. A sea strainer with 2-inch diameter inlet and outlet removed larger debris from the water to protect pumps. A sampling technician had to turn it on and off to remove and replace the snare materials where particular care had to be taken to ensure that the seawater would not adversely affect the safety of other operations. Oleophilic snare or oleophilic pad were used to measure the oil content within the porous strainer or basket (Research and planning group, 2006). In the same way as the ballast water samples, around 300
litre of seawater were filtered, distributed into 250 ml beakers and stabilised with formalin for storage and analysis.

3-6- Physicochemical characterisation of samples

The purpose of sampling was to measure the average of temperature, the average of salinity, the average of dissolved oxygen, PAHs, and the average concentration of trace metals in ballast water, seawater, and sea sediment of Khark Island. The equipment and standard methods that were used in identifying physical and chemical parameters are shown in Table III. Most bacteria grow best when measured parameters are optimum for that strain, in the real world microbes can expect frequent environmental changes. In fact, some bacteria have evolved to thrive in environments that are inhospitable for most life. The temperature (°C), salinity and dissolved oxygen were measured on-board at the time of sampling, but the other parameters were subsequently determined in the laboratory.

Table 3: Equipment and standard method of used in identifying physical and chemical parameters
4- Results

The results show the comparison of the temperature, salinity, dissolved oxygen, polycyclic aromatic hydrocarbons (PAHs), trace of heavy metals in ballast water of 9 oil tankers and seawater of the Gulf.

4-1 Temperature

Fig. 1 shows the fluctuations in the seawater temperature of Khark Island through the four seasons; it ranges from 18.5 °C in winter to 33 °C in summer with an average of 25 °C in autumn and spring.

Fig. 1: Average of seawater temperature in Khark Island

Fig. 2 shows that the temperature of the ballast water varied from 22 °C (oil tanker number 8 Japan) to 34 °C (oil tankers number 4 & 6 from India and UAE respectively). This suggests that the temperature tends to be higher the shorter the journey. For tankers from the same port of origin, there is a trend for those tankers with a smaller capacity or smaller amount of ballast water discharge to have a higher temperature.

Fig. 2: Ballast water temperature of oil tankers (number of each tanker is given in Table 2)

4-2 Salinity

Fig. 5 shows that the salinity of the seawater changes from 32 ppt in winter to 41 ppt in summer, with an annual mean of 37.7 ppt. The increase in the summer is due to increased evaporation at the higher temperatures.
Fig. 3: Average of seawater salinity in Khark Island

Fig. 6 also shows a correlation between temperature and salinity, in that oil tankers that have higher temperature also have higher salinity. The difference between the oil tanker with the highest salinity, 35 ppt for number 6 from the UAE and that with the lowest salinity, 25 ppt from Japan, is of the same magnitude as the summer-winter difference of the seawater but the absolute level of salinity is substantially smaller than that of the seawater around Khark Island with only 31.2 ppt.

Fig. 4: Ballast water salinity of oil tankers

4-3 Dissolved Oxygen

Bacteria, namely aerobes, are those that require oxygen for growth and only make energy from respiration. Fig. 5 shows the oxygen content of seawater changes: it ranges from 4.6 milligram per litre in summer to 7.8 milligram per litre in winter, with 5.8 milligram per litre in fall and spring.

Fig. 5: Average of seawater dissolved oxygen concentration in Khark Island

Fig. 4 shows the result of the dissolved oxygen in ballast water. It is noticed that there is a large differences between 3.8 milligram per litre in oil tanker number 8 from Japan and 6.8 milligram per litre in oil tanker number 6 from UAE due to the differences in distance and consequently consuming more oxygen in longer distance. Oil tankers with different capacity have the same dissolved oxygen.

Fig. 6: Ballast water dissolved oxygen concentration of oil tankers
4-4 Heavy metals

Heavy metals can enter the environment through wastewater and ballast water. Figs. 7, 8 and 9 show the trend of Co, Ni, and Cr in ballast water, while Fig. 10 shows the average concentration of heavy metals in the sea sediment of Khark Island. The amount of heavy metals contained in the ballast water depends mainly on the type of ballast water management. For example, oil tanker number 9 from China has the least trace metals due to the combination of ballast water exchange and chemical treatment, while oil tanker number 8 from Japan was second because of using ballast water exchange and physical treatment. These were followed by number 6 from UAE and number 7 from Taiwan which used only chemical treatment. Finally, oil tankers that used only ballast water exchange had more heavy metals than the others. In the case of oil tankers using the same ballast water management strategy, there were still differences in heavy metals contained in the ballast water because of distance between departure and arrival port, capacity, and weight of oil tankers. The result of heavy metal of the oil tanker from UAE that used only chemical treatment was so close to the result of oil tanker from Japan that used exchange and physical treatment because oil tanker number 6 from UAE was so close to arrival port that it did not need to have ballast water exchange. It is noteworthy that oil tankers from the same departure port seem to have more trace metals if they have a higher capacity. Individual findings for each trace metal are summarised in the following paragraphs.

The concentration of cobalt, Co, in seawater changed between 0.008 milligram per litre and 5 milligram per litre in different seasons. In contrast, Co in the ballast water varied less, with a minimum amount of 1.9 milligram per litre for oil tanker number 9 from China and the maximum amount of 5 milligram per litre for oil tanker numbers 4 and 1 from India and China, respectively (Fig. 7).
Nickel, Ni, had such a low concentration in the seawater that it never increased above the minimum resolution of the instrument (<0.004 milligram per litre) whereas it varied in the ballast water between 0.004 (oil tanker number 9 from China) and 0.029 milligram per litre (oil tanker number 2 from Singapore) (Fig. 8).

Similarly, chromium, Cr, in seawater was always below the sensitivity of the instrument (<1 milligram per litre) but was found the ballast water to be between 0.7 milligram per litre in oil tanker number 9 from China and 2.1 milligram per litre in oil tanker number 5 from India (Fig. 9). Lead, Pb, was never observed in either seawater or ballast water to within the limitation of measurement (<0.01 milligram per litre), nor was oil (<0.02 milligram per litre).

Fig. 7: Ballast water Co concentration of oil tankers

Fig. 8: Ballast water Ni concentration of oil tankers

Fig. 9: Ballast water Cr concentration of oil tankers

Results of trace metals in sea sediments are also shown in Fig. 10. The mean concentration of Co, Cr, Ni and Pb in sea sediment in Khark Island is 13.95, 8.65, 23.55 and 27.15 milligram per litre respectively.

Fig. 10: Average of sea sediment trace metals concentration in Khark Island
4-5 Polycyclic aromatic hydrocarbons (PAHs)

Fig. 11 shows the concentration of the PAHs compound in ballast water, seawater and sea sediment respectively. No PAHs were recorded in the seawater samples, presumably because it is less buoyant than water. The highest concentration of PAHs in ballast water was found in oil tanker number 6 from UAE with 2 microgram per litre, closely followed by oil tanker number 1 from China, as can be seen in Fig. 11. All others had a concentration between 1 and 1.5 microgram per litre with oil tanker number 3 from Singapore having the least with 1 microgram per litre. A concentration of sea sediment PAHs equal to 0.0054 milligram per litre.

Fig.11: Ballast water PAHs concentration of oil tankers

5-Discussion

Results show physical and chemical characteristic of ballast water is not in the range of sea sediment, specifically for the ships from India that shows a different condition of water in the Gulf and Indian Ocean. For example, in heavy metals, the result of Ni in ballast water (oil tanker number 2 from Singapore) is 0.029 which is higher than sea sediment (0.004) or the value of Cr in ballast water is 2.1 (oil tanker number 5 from India) that is higher than the limitation (less than 1 mg/litre). However, there are no huge differences in PAHs of ballast water and sea sediment. Salting of ballast water is 36 ppt (Density of 1.025) which is between results of sea sediment (32 ppt and 41 ppt with density of 1.031). The dissolved oxygen of ballast water is less than sea sediment; hence the number of aerobic beings in ballast water is less than sea sediment.
At the time of researching, most of the oil tanker used to come from Asian countries that have the close physiochemical to the Gulf. It is impossible to do anything about what happened in past, but it is possible to manage ballast water and prevent this from any hazardous to happen in the future.

The previous section presented the results for each physicochemical analysis in turn. Here, we will highlight some key correlations to aid with the interpretation of the findings using Pearson’s correlation coefficient. The very high correlation between temperature and salinity \((r= 0.940)\) has already been pointed out but there is also a correlation to dissolved oxygen, where the correlation of DO to salinity with \(r= 0.782\) is better than that between DO and temperature \((r= 0.767)\). In addition to this, the distance travelled emerges as an important factor highly correlated to DO \((r= 0.988)\), salinity \((r= 0.820)\) and temperature \((r= 0.804)\), respectively. The correlation of salinity to port of origin is shown in Fig. 12 which suggests a decrease in salinity from the nearest port in the UAE to the most distant port in Japan with only one exception for the oil tanker from Taiwan.

Fig. 12: Salinity of ballast water against origin. Countries of origin with a single tanker are shown as a horizontal line. Countries with two tankers show the two salinity results as the upper and lower limit of the box and the average as the horizontal line.

The amount of dissolved oxygen (DO) shows a very clear decrease with distance to the origin, as illustrated in Fig. 13, where the measurements from the same origin were identical for all three pairs sampled, irrespective of ballast water management. While this might be linked to the conditions at the point of departure, it is more likely to be a consequence of the duration of the voyages. The longer the voyage lasts, the more oxygen is consumed by aerobes present and the less remained at the time of sampling. A final observation before considering heavy metals is that
the amount of PAHs in the ballast water shows a clear correlation with volume of ballast water exchanged ($r= 0.748$).

Fig. 13: Salinity of ballast water against origin. Countries of origin with a single tanker are shown as a horizontal line. Countries with two tankers show the two salinity results as the upper and lower limit of the box and the average as the horizontal line.

The presence of heavy metals is most strongly affected by the ballast water management used. This is illustrated in Fig. 14 for cobalt as an example, where water exchange only consistently returned the highest concentrations for cobalt. This was followed by chemical treatment alone, and then the combination of water exchange and physical treatment. The lowest concentration was found after water exchange complemented with chemical treatment. The results for chromium were qualitatively identical but nickel was somewhat unusual. The management consisting of water exchange only spanned the entire range from lowest to highest concentration across all nine oil tankers. The nickel concentration for the other three management methods, however, showed the same trend as for Co and Cr.

Fig. 14: Concentration of cobalt in the ballast water against ballast water management method.

The heavy metal concentration found in the sediment compared favourably to other recent surveys in the Gulf (Youssefa et al., 2015) suggesting that there is currently no cause for concern for the ecosystems around Khark Island. However, the concentrations of heavy metals in the ballast water
were in most cases significantly above those of the sea sediment samples that indicate that ballast water is a source of heavy metals when it is exchanged with the local sea sediment. This suggests that effective ballast water management is important to maintain the local sea sediment quality. Given the limited sample of this study, one can only conclude that either water exchange alone or chemical treatment alone is not effective to protect the environment from heavy metal pollution but that the combination of water exchange with either physical or chemical treatment is recommended. To explore the most effective treatment, one should now refine this study with more targeted sampling of vessels employing a variety of treatment. For example, one of the promising methods would be the UV/Ag-TiO2/O3, which was proven to be efficient for D. salina inactivation and has higher treatment efficiency than using one of these methods alone (Wu et al., 2011). One additional measure to reduce local pollution would be to carry out ballast water exchange several times during voyage to have water more similar to the destination water.

6- Conclusion
This study investigated the effect of different methods of ballast water management and port of origin for a selection of oil tankers arriving in Khark Island in the Persian Gulf. The results showed that the salinity and dissolved oxygen (DO) are highly correlated with the distance of the port of origin or duration of voyage, where both salinity and DO decreased substantially with increasing distance. It would therefore seem recommended to carry out ballast water exchanges several times during voyage to ensure that the ballast water salinity and DO are similar to those at the destination. The choice of ballast water management method seemed to have a substantial effect only on the heavy metal concentration of the parameters investigated here. However, given the toxicity of heavy metals, it seems to be strong evidence to consider the most appropriate ballast water management method carefully. The evidence here suggests that ballast water exchange alone is
least reliable in reducing heavy metal concentrations, nor is chemical treatment alone. In contrast, combining water exchange with either physical or chemical treatment appears to be the most reliable choice. Given the scope of this study, it is not yet possible to identify which specific combination is the best. This would be the subject of future work.

(Suna et al., 2000; Yazdanparast et al., 2004; Yellow Spring Instrument Company, n.d., n.d.)

References

Results and experiences from seven years of full-scale testing of ballast water management systems. Stephanie Delacroix Norweg. Mar. Pollut. Bull. 73, 24–36.

UNEP, 1999. Overview on Land-based Sources and Activities Affecting the Marine Environment in the ROPME Sea Area.

Gollasch, S., 2006. Overview on introduced aquatic species in European navigational and adjacent
waters 84–89. doi:10.1007/s10152-006-0022-y

International Maritime Organization, I.M.O., 2008. RESOLUTION MEPC.173(58), GUIDELINES
FOR BALLAST WATER SAMPLING (G2) [WWW Document]. URL

http://www.lenntech.com/library/clo2/chlorine-dioxide.htm?gclid=CJm-4ZGfnb8CFQb3wgdKoACg#ixzz35xjekRBG

Oemcke, D.J., Hans van Leeuwen, J., 2005. Ozonation of the marine dinoflagellate alga

different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide. Environ. Technol. 36, 2094–2104. doi:10.1080/09593330.2015.1021858

UNEP, 1999. Overview on Land-based Sources and Activities Affecting the Marine Environment in the ROPME Sea Area.

doi:10.1016/j.chemosphere.2014.03.135

Fig. 1:

![Temperature Chart]

Temperature (°C)

- Summer: 35°C
- Fall: 25°C
- Winter: 15°C
- Spring: 30°C
Fig. 2:

Temperature (°C) vs. # of oil tanker

- Temperature values range from 0 to 35 °C.
- The x-axis represents the number of oil tankers, from 1 to 9.
- The y-axis represents temperature values in °C.
Fig. 3:

Salinity (ppt)

- Summer: 40 ppt
- Fall: 40 ppt
- Winter: 30 ppt
- Spring: 35 ppt
Fig. 4:

![Bar Chart: Salinity (ppt) vs. # of oil tanker]

- Y-axis: Salinity (ppt)
- X-axis: # of oil tanker
- Data points indicate the relationship between salinity levels and the number of oil tankers.
Fig. 5:

<table>
<thead>
<tr>
<th>Season</th>
<th>Dissolved Oxygen (milligram per litre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>4.5</td>
</tr>
<tr>
<td>Fall</td>
<td>6.0</td>
</tr>
<tr>
<td>Winter</td>
<td>8.0</td>
</tr>
<tr>
<td>Spring</td>
<td>5.5</td>
</tr>
</tbody>
</table>

The graph shows the variation of dissolved oxygen in different seasons.
Fig. 6:

![Bar chart showing dissolved oxygen (milligram per litre) vs. number of oil tankers.](image-url)
Fig. 7:

Cobalt concentration (milligram per litre) vs. # of oil tanker.
Fig. 8:

![Bar chart showing nickel concentration versus the number of oil tankers. The x-axis represents the number of oil tankers (1 to 9), and the y-axis represents nickel concentration (milligram per litre) ranging from 0 to 0.035. The chart indicates varying nickel concentrations across different oil tankers, with some having significantly higher concentrations than others.]
Fig. 9:

Chrome concentration (milligram per litre) vs. # of oil tanker.
Fig. 10:

Trace metals concentration (milligram per litre)

Type of trace metals

Co Cr Ni Pb
Fig. 11:

![Bar chart showing PAHs concentration (microgram per litre) against the number of oil tankers.](image-url)
Fig. 12:
Fig. 13:
Fig. 14:
<table>
<thead>
<tr>
<th>No.</th>
<th>Volume (m3) of every oil tanker</th>
<th>Number of specified Oil Tanker</th>
<th>Volume (m3) of oil tankers</th>
<th>Country of origin of oil Tanker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,047,593</td>
<td>103</td>
<td>313,902,079</td>
<td>Iran</td>
</tr>
<tr>
<td>2</td>
<td>2,241,586</td>
<td>41</td>
<td>91,905,026</td>
<td>India</td>
</tr>
<tr>
<td>3</td>
<td>2,446,496</td>
<td>34</td>
<td>83,180,864</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>4</td>
<td>319,300</td>
<td>96</td>
<td>30,652,800</td>
<td>UAE</td>
</tr>
<tr>
<td>5</td>
<td>1,358,786</td>
<td>20</td>
<td>27,175,720</td>
<td>Kuwait</td>
</tr>
<tr>
<td>6</td>
<td>939,188</td>
<td>23</td>
<td>21,601,324</td>
<td>Taiwan</td>
</tr>
<tr>
<td>7</td>
<td>848,612</td>
<td>19</td>
<td>16,123,628</td>
<td>Singapore</td>
</tr>
<tr>
<td>8</td>
<td>738,220</td>
<td>16</td>
<td>11,811,520</td>
<td>China</td>
</tr>
<tr>
<td>9</td>
<td>292,689</td>
<td>27</td>
<td>7,902,603</td>
<td>Japan</td>
</tr>
<tr>
<td>10</td>
<td>637,251</td>
<td>10</td>
<td>6,372,510</td>
<td>Egypt</td>
</tr>
<tr>
<td>11</td>
<td>266,056</td>
<td>9</td>
<td>2,394,504</td>
<td>South Korea</td>
</tr>
<tr>
<td>12</td>
<td>182,525</td>
<td>13</td>
<td>2,372,825</td>
<td>Qatar</td>
</tr>
<tr>
<td>13</td>
<td>83,564</td>
<td>9</td>
<td>752,076</td>
<td>Pakistan</td>
</tr>
<tr>
<td>14</td>
<td>128,005</td>
<td>4</td>
<td>512,020</td>
<td>Indonesia</td>
</tr>
<tr>
<td>15</td>
<td>96,373</td>
<td>3</td>
<td>289,119</td>
<td>Sri lanka</td>
</tr>
<tr>
<td>16</td>
<td>79,274</td>
<td>3</td>
<td>237,822</td>
<td>Greek</td>
</tr>
<tr>
<td>17</td>
<td>47,985</td>
<td>2</td>
<td>95,970</td>
<td>Spain</td>
</tr>
<tr>
<td>18</td>
<td>84,460</td>
<td>1</td>
<td>84,460</td>
<td>South Africa</td>
</tr>
<tr>
<td>19</td>
<td>52,798</td>
<td>1</td>
<td>52,798</td>
<td>Malaysia</td>
</tr>
<tr>
<td>20</td>
<td>47,990</td>
<td>1</td>
<td>47,990</td>
<td>Netherland</td>
</tr>
<tr>
<td>21</td>
<td>46,346</td>
<td>1</td>
<td>46,346</td>
<td>Australia</td>
</tr>
<tr>
<td>22</td>
<td>36,953</td>
<td>1</td>
<td>36,953</td>
<td>Yemen</td>
</tr>
<tr>
<td>23</td>
<td>33,700</td>
<td>1</td>
<td>33,700</td>
<td>Bahrain</td>
</tr>
<tr>
<td>24</td>
<td>33,229</td>
<td>1</td>
<td>33,229</td>
<td>Belgium</td>
</tr>
<tr>
<td>25</td>
<td>7,868</td>
<td>1</td>
<td>7,868</td>
<td>Oman</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>617,625,754</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Country</td>
<td>Total BW Capacity (tons)</td>
<td>BW On Board (tons)</td>
<td>BW Discharge (tons)</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>China</td>
<td>101,493</td>
<td>88,146</td>
<td>88,146</td>
</tr>
<tr>
<td>2</td>
<td>Singapore</td>
<td>105,306</td>
<td>85,617</td>
<td>85,617</td>
</tr>
<tr>
<td>3</td>
<td>Singapore</td>
<td>57,457</td>
<td>51,930</td>
<td>50,664</td>
</tr>
<tr>
<td>4</td>
<td>India</td>
<td>52,708</td>
<td>49,900</td>
<td>47,854</td>
</tr>
<tr>
<td>5</td>
<td>India</td>
<td>96,882</td>
<td>76,311</td>
<td>75,306</td>
</tr>
<tr>
<td>6</td>
<td>UAE</td>
<td>106,171</td>
<td>95,830</td>
<td>88,946</td>
</tr>
<tr>
<td>7</td>
<td>Taiwan</td>
<td>103,539</td>
<td>75,306</td>
<td>50,270</td>
</tr>
<tr>
<td>8</td>
<td>Japan</td>
<td>103,929</td>
<td>88,840</td>
<td>45,480</td>
</tr>
<tr>
<td>9</td>
<td>China</td>
<td>107,057</td>
<td>93,910</td>
<td>68,099</td>
</tr>
<tr>
<td>No</td>
<td>Parameters</td>
<td>Method</td>
<td>Equipment</td>
<td>Reference</td>
</tr>
<tr>
<td>----</td>
<td>----------------------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Temperature, Salinity</td>
<td>St.Method 2520</td>
<td>S.T.C. meter YSI model 33</td>
<td>(Yellow Spring Instrument Company, n.d.)</td>
</tr>
<tr>
<td>2</td>
<td>Dissolved oxygen</td>
<td>ASTM D888</td>
<td>D.O. meter YSI model 57</td>
<td>(Yellow Spring Instrument Company, n.d.)</td>
</tr>
<tr>
<td>3</td>
<td>PAHs</td>
<td>ASTM D4465</td>
<td>Spectrometer Perkin Elmer LS-5</td>
<td>(Yazdanparast et al., 2004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTM D5368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Heavy metals</td>
<td>St.Method 111B,C</td>
<td>Atomic Absorption Spectrophotometer Perkin Elmer Zeeman 5100-PC</td>
<td>(Suna et al., 2000)</td>
</tr>
</tbody>
</table>