Flue Gas Injection into Gas Hydrate Reservoirs for Methane Recovery and Carbon Dioxide Sequestration

Jinhai Yanga*, Anthony Okwanankea, Bahman Tohidia, Evgeny Chuvilinb, Kirill Maerleb, Vladimir Istominb, Boris Bukhanovb, Alexey Cheremisinb

a Institute of Petroleum Engineering, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

b Skolkovo Institute of Science and Technology, Mosco 143026, Russia

Abstract

Flue gas injection into methane hydrate-bearing sediments was experimentally investigated to explore the potential both for methane recovery from gas hydrate reservoirs and for direct capture and sequestration of carbon dioxide from flue gas as carbon dioxide hydrate. A simulated flue gas from coal-fired power plants composed of 14.6 mole\% carbon dioxide and 85.4 mole\% nitrogen was injected into a silica sand pack containing different saturations of methane hydrate. The experiments were conducted at typical gas hydrate reservoir conditions from 273.3 to 284.2 K and from 4.2 to 13.8 MPa. Results of the experiments show that injection of the flue gas leads to significant dissociation of the methane hydrate by shifting the methane hydrate stability zone, resulting in around 50 mole\% methane in the vapour phase at the experimental conditions. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure generated methane-rich gas mixtures with up to 80 mole\% methane. Meanwhile, carbon dioxide hydrate and carbon dioxide-mixed hydrates were formed while the methane hydrate was dissociating. Up to 70\% of the carbon dioxide in the flue gas was converted into hydrates and retained in the silica sand pack.

* Corresponding author, email: jinhai.yang@hw.ac.uk
1 **Introduction**

An abundance of methane (CH₄) is trapped in gas hydrates in subsea sediments [1] and permafrost regions [2], although the actual volumes of gas hydrate deposits worldwide are still arguable [3]. Gas hydrates, a type of ice-like clathrate compounds, can be decomposed if the temperature and pressure are outside their hydrate stability zone (HSZ), or the chemical equilibrium between the hydrate phase and the adjacent environment is disturbed [4]. Based on this principle, several methods were suggested for methane recovery from gas hydrates in sediments, such as depressurisation, thermal stimulation, inhibitor injection [5], and carbon dioxide (CO₂) replacement [6], or combinations of the above.

Thermal stimulation brings heat into gas hydrate deposit layers by a variety of methods such as hot brine injection, steam injection, in-situ combustion, and electromagnetic heating. Laboratory experimental results showed that about 50% of the recovered energy would be consumed to generate the required heat for heating up the gas hydrate-bearing sediment [7]. Reservoir simulation indicated that thermal stimulation appears ineffective because of huge quantity of heat loss to porous media in the hydrate layer or the geologic formations in the vicinity [8], particularly for disperse low-saturation of gas hydrate deposits [9]. The Mallik 2002 gas hydrate research well programme tested the thermal stimulation technique at in situ conditions (907-920 m below surface, 8 °C and 10 MPa) [10]. It was found that, unless the hydrate layers exhibit sufficient thickness, hydrate saturation, and permeability, it is not economically viable to heat a large mass of a hydrate-containing formation by the thermal stimulation alone [11].
Inhibitor injection shifts the gas hydrate deposit conditions out of the hydrate stability zone (HSZ) by injecting alcohol such as methanol, monoethylene glycol, and diethylene glycol. A very large volume of methanol will be needed to treat the water in the hydrate layers and to deal with the dilution by the water from hydrate dissociation as well. Moreover, injected inhibitors could pose serious risk to damage the environment for the marine ecosystem. As a result, it is believed that inhibitor injection technique on its own will not be viable for any type of gas hydrate deposits [8].

Depressurisation method moves the hydrate reservoir conditions outside the HSZ by reducing the pressure in the gas hydrate reservoir. By comparison to the thermal stimulation technique and the inhibitor injection technique, it does not need to input additional energy or chemicals into the hydrate reservoir, therefore, is technically simple, effective, and prompt inducement to gas hydrate decomposition [12]. The depressurisation technique was successfully applied to produce methane from gas hydrate reservoirs in both onshore and offshore field tests. Messoyakha gas field in the West Siberian basin (Russia) is the only commercial production reservoirs of gas hydrates in the world, where natural gas has been produced from gas hydrate deposits since 1970s [13]. A series of scientific and engineering field trials were conducted in the Mackenzie Delta of Canadian Arctic. The Mallik 2002 gas hydrate production research well programme investigated the feasibility of gas hydrate production by thermal stimulation and depressurisation in short-term production experiments [14], while the results of the Mallik 2007/2008 programme demonstrated that natural gas can be produced from gas hydrate reservoirs by depressurisation alone [15]. Depressurisation method was also tested in the world first offshore methane recovery field trial in Nankai Trough, Japan [16]. All these hydrate sites are sandstone or marine sand reservoirs with high porosity, high permeability, and high hydrate saturation. However, Boswell and Collett estimated that such sandstone-bedded gas hydrates are only a small fraction of the total gas hydrate resources worldwide [17]. For the
overwhelming majority in low-permeability sediments or disperse distribution [18] of gas hydrates, depressurisation becomes ineffective. Additionally, for the hydrate reservoirs well inside the HSZ, the reservoir pressure has to be reduced very low to be able to dissociate the gas hydrates. As a consequence, depressurisation results in huge volume of water production, sediment instability, and sand production challenges [8]. Yamamoto et al. reported that sand produced during depressurisation blocked the downhole production device and terminated the gas production of the world’s first offshore trial of gas production from marine hydrate reservoirs after six days of gas flow in the Eastern Nankai Trough, Japan [19].

CO₂ replacement method is based on the fact that chemical potential of methane hydrate is higher than that of CO₂ hydrate [20]. Theoretically, CO₂ molecules have relatively high tendency to replace the methane molecules from the methane hydrate cages, which was initially proposed by Ohgaki et al. [6]. Under ideal conditions such as high specific surface areas, high permeability, good heat and mass transfer the process of CO₂ displacement process could be fast and efficient. For example, nearly all methane in methane hydrate was replaced by CO₂ in two half cylindrical sandstone cores separated with a purpose-made spacer [21]. Shin et al. found that methane-isopentane hydrates almost completely disappeared after CO₂ replacement using high-power decoupling ¹³C NMR and Raman spectra, in a mechanically stirred reactor [22]. It was also observed that CO₂ replacement occurred quickly in fine hydrate particles that were converted from ice powers in contact with methane [23]. In practice, for example, in sediments or in-situ hydrate reservoirs, the process is constrained by a number of geologic factors such as permeability, porosity, heat and mass transfer, and secondary hydrate formation. Experimental study showed that the presence of excess water and clays resulted in slow CO₂-CH₄ exchange rate [24]. It was also reported that high saturation of gas hydrates could lead to lower percentage of CO₂ replacement [25]. The undesired CO₂ hydrate or CO₂-CH₄ mixed hydrate could clog the pores in the sediments or isolate the methane hydrate from CO₂ by
forming CO₂ hydrate shells that coat on the methane hydrate crystals [26]. Recent results showed that the efficiency of CO₂ replacement technique could be improved by introduction of other gases. Masuda et al. experimentally investigated injection of a mixture of 60 mol% CO₂ and 40 mol% nitrogen (N₂) to improve the CO₂-CH₄ exchange rate and found that CO₂-CH₄ exchange ratios were about 30% for low hydrate-saturation and only 5% for high hydrate-saturation in the sand cores [27]. The experimental results from Kang et al. showed that injection of a simulated flue gas with 20 mol% CO₂ and 80 mol% N₂ increased the methane recovery ratio from 64 to 85% [28]. Kang et al. experimentally demonstrated that injection of CO₂ with air together can enhance CO₂-replacement process by decomposition-driven guest exchange mechanism [29]. Lee et al. reported the latest results showing that flue gas can be used to replace methane from structure H hydrates that was formed with methane and neohexane [30]. The first field trial of the CO₂ replacement technique was successfully conducted in the North Slope of Alaska [31]. 77% N₂ was added to the CO₂ stream to prevent secondary hydrate formation and have a high CO₂-CH₄ exchange rate [32]. Garapati et al. conducted reservoir simulation to demonstrate how addition of N₂ affect the dynamic process of gas production after injection of the CO₂-N₂ mixture [33]. In about 6 weeks of gas production, in total, 23.2 mscm (million standard cubic meters) CH₄ was produced at the well head; about 54% of the injected CO₂ was stored underground; and more than 50% of the produced methane was retained in the well until the well was further depressurised to below the methane hydrate dissociation pressure [34].

All the techniques reviewed above face challenges to be able to produce methane at an economically viable rate, although they appear technically feasible [35]. Development of novel techniques has therefore become crucial for the commercial viability of methane recovery from gas hydrate reservoirs. This work proposes direct injection of flue gas into gas hydrate reservoirs to decompose methane hydrates and recover methane from gas hydrates and
simultaneously sequester the CO₂ component of the flue gas as CO₂ hydrate or CO₂ mixed hydrates in the hydrate reservoir formations. Application of the flue gas injection method could substantially enhance the feasibility of depressurisation method for severe hydrate reservoir conditions and avoid CO₂ capture burden of geologic storage of CO₂.

Methods

The major constituents of flue gas are nitrogen and CO₂. For example, coal-fired flue gas (post-combustion) typically contains about 12-15% CO₂ and about 80% N₂ apart from water vapour and oxygen [36]. As a concept-proof work, for simplicity, deionised water and a simulated flue gas composed of 14.6 mol% CO₂ and 85.4 mol% N₂ were used. Injection of flue gas will move the thermodynamic conditions of the gas hydrate reservoir toward lower temperature and higher pressure. Figure 1 illustrates the HSZs of CO₂, methane, the simulated flue gas in the presence of water, which was predicted using our in-house thermodynamic model HydraFLASH [37]. It can be seen that 50 mol% of the flue gas can shift the methane hydrate phase boundary to the left by 3.5 K.

![Figure 1 Predicted shifts in methane hydrate stability zone due to injection of flue gas and the experiment conditions](image-url)
Depending on the composition and concentration of the injected flue gas, injection of the flue gas may result in shifting the hydrate reservoir conditions outside the methane HSZ hence dissociation of the methane hydrate. Methane hydrate decomposes into water and methane gas and the released methane gas will be mixed with the flue gas injected. The methane gas ratio in the gas mixture will gradually increase as more methane is released from hydrate dissociation. The hydrate decomposition will continue (though controlled by heat and mass transfer) until the HSZ back to a region where the temperature and pressure conditions in the hydrate-bearing sediments are located in the new HSZ of the mixed gas. In addition to the immediate decomposition due to the HSZ shift, the methane molecules originally trapped in the crystalline cages of the remaining methane hydrate could also be replaced by the CO₂ molecules in the injected flue gas, given that the tendency/driving force of CO₂-N₂ replacement is much weaker than CO₂ only. Anderson predicted the enthalpy of dissociation and hydration number of carbon dioxide hydrate and from the Clapeyron equation. His results showed that CO₂ replacement is a relatively weak exothermic reaction [38] although methane hydrate dissociation is also endothermic [39]. The overall consequence of the hydrate dissociation and CO₂ replacement will cause a reduction in the local temperature, which hinders the methane hydrate decomposition. Therefore, heat transfer also play an important role in methane recovery by flue gas injection.

Meanwhile, some of the CO₂ presents in the injected flue gas could be stored in the sediments through a variety of reactions. The CO₂ molecules could be combined with water in the pores and form CO₂ hydrate, CO₂ mixed hydrates such as CO₂-CH₄ and N₂-CO₂-CH₄, given that the typical gas hydrate reservoir conditions and limited CO₂ content of the flue gas do not favour the formation of CO₂-N₂ hydrate, N₂-CH₄ hydrate, and N₂ hydrate. CO₂-CH₄ molecule exchange may also occur and trap some CO₂ in a form of CO₂-CH₄ hydrate. Additionally, the CO₂ in the flue gas may also dissolve in the surrounding water at a typical solubility several
times higher than that of methane at similar temperature and pressure conditions, depending on
the thermodynamic conditions and salinity. However, the amount of CO₂ dissolution in water
is constrained by CO₂ partial pressure. Finally, the dissolved CO₂ could be converted into other
solid minerals through mineralization reactions over geological time scale [40].

3 Experimental

Figure 2 shows the schematic diagram of the test set-up. The set-up comprises of a stainless
steel cylindrical cell with a movable piston. The cell is 75 mm in diameter and 300 mm in
length. Its effective volume is 800 cm³. The piston is used to change the cell volume and to
achieve the desired overburden pressure by applying hydraulic pressure behind the piston. A
linear variable differential transmitter (LVDT) is mounted on the piston rod to determine the
piston position hence the cell volume. A cooling jacket surrounding the cell is connected to a
thermostat to achieve the required temperature. The set-up is equipped with a hand pump to
initially adjust the overburden pressure and a Quizix pump to maintain the system pressure.
The working temperature range of the set-up normally is 253 K to 323 K, and working pressure
is up to 40 MPa. The system temperature is measured using a platinum resistance thermometer
(PRT) (accuracy 0.1 K) and the system pressure and the overburden pressure are measured
using two Druck pressure transducers (accuracy 0.05 MPa). A personal computer (PC) is used
to record the system pressures, temperature, and the piston movement through a data
acquisition device (DAD).
The methane recovery tests were conducted in two steps, i.e., hydrate formation and methane recovery. In the first step, silica sand with a mass-medium size 256.5 µm was partially saturated with deionised water and then loaded into the test cell. After applying vacuum to remove air, an overburden pressure of 3.5 MPa was applied to compact the water-wetted sediment. Methane was injected in the compacted sediment until the desired pressure and the cell was cooled to just above the freezing temperature of water to form methane hydrate. Next, after completion of methane hydrate formation, synthetic flue gas was injected to purge the remaining methane gas. To minimise methane hydrate dissociation, the purging pressure was about 0.7 MPa higher than the dissociation pressure of the flue gas hydrate. After purging, the cell pressure was quickly reduced to the desired point by returning the piston, which expanded.
the cell volume thus reduced the system pressure without any need for withdrawing any fluids from the test cell. Methane recovery process started once the desired pressure was reached. The system temperature and pressure were maintained constant until depressurisation stage started. The methane recovery process was monitored by taking a series of gas samples at predetermined time intervals, while the system pressure was maintained by a dual-cylinder pump (Quizix SP-5200, Chandler Engineering). The gas samples were analysed using a gas chromatograph (Varian 3600, Agilent Technologies). The average calibration errors of the gas chromatograph were ±1.5% for methane, ±0.5% for carbon dioxide, and ±1.2% for nitrogen.

4 Experimental Results

This work was set to experimentally investigate the feasibility of the flue gas injection approach, i.e., to understand three fundamental issues: how methane hydrate decomposes after exposing to a methane-flue gas mixture, how flue gas affects depressurisation process, and whether or not the CO₂ in flue gas could be sequestered while methane hydrate is decomposing due to the presence of the flue gas. To understand these issues, the experiments were conducted at different temperature-pressure conditions. As shown in Figure 1, Experiments 1 to 3 were set inside both methane and CO₂ HSZs, while Experiment 4 was set outside CO₂ HSZ but inside methane HSZ. The experimental temperature covered the typical temperature conditions of naturally-occurring hydrate reservoirs from around 273.3 to 284.2 K, whilst the experiment pressures were set to allow the system to reach a new thermodynamic equilibrium with about 50 mol% methane in the vapor phase after flue gas injection.

Table 1 Methane recovery experiment conditions

<table>
<thead>
<tr>
<th>Experiment</th>
<th>T (K)</th>
<th>P (MPa)</th>
<th>ϕ (%)</th>
<th>S_h (vol%)</th>
<th>S_g (vol%)</th>
<th>S_w (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>273.3</td>
<td>4.2</td>
<td>39.0</td>
<td>60.2</td>
<td>28.3</td>
<td>11.5</td>
</tr>
<tr>
<td>2</td>
<td>278.1</td>
<td>7.2</td>
<td>37.7</td>
<td>54.4</td>
<td>26.0</td>
<td>19.6</td>
</tr>
<tr>
<td>3</td>
<td>282.1</td>
<td>10.7</td>
<td>37.7</td>
<td>48.8</td>
<td>27.1</td>
<td>24.0</td>
</tr>
<tr>
<td>4</td>
<td>284.2</td>
<td>13.8</td>
<td>37.0</td>
<td>47.3</td>
<td>25.5</td>
<td>27.2</td>
</tr>
</tbody>
</table>
Silica sand was used to simulate marine sediments. The sand was mixed with water to have around 55 pore volume% of water saturation. After vacuuming and compacting, methane was injected to pressurise the system to around 20 MPa at a room temperature of around 293 K. Methane hydrate was then formed by cooling the system directly to 273.3 K. After methane hydrate formation, the system was heated to the desired temperature and depressurised to the desired pressure. Finally, the saturation of methane hydrate, remaining water, and remaining methane gas was determined based on PVT calculations. Table 1 shows the experimental conditions before flue gas was introduced into the sand pack containing methane hydrate, including experimental temperature (T) and pressure (P), porosity (\(\phi \)), methane hydrate saturation (\(S_h \)), remaining methane gas saturation (\(S_g \)), and remaining water saturation (\(S_w \)).

4.1 Decomposition kinetics at constant pressure

Methane recovery immediately started once the system was depressurised to the desired point after purging out most of the remaining methane gas. As a typical example, in Experiment 1, Figure 3 illustrates the kinetic process of methane decomposition after the flue gas was injected. In the first few hours from A to B, the methane hydrate is dissociated very fast, leading to a sudden increase in methane concentration from the initial value to above 40 mol% in the vapour phase. This is called quick dissociation stage (Stage 1). Masuda et al. showed very similar dissociation process for nitrogen-induced methane hydrate dissociation using their hydrate reservoir simulator [41]. The fast dissociation stage was also experimentally observed for air-induced hydrate dissociation by Haneda et al. [42]. From B to C in Stage 2, the methane was kept slow dissociation over about 160 hours and the methane concentration became constant after about 270 hours. Finally, from C to D in Stage 3, the system was depressurised in steps at the same temperature and more methane was produced from methane hydrate decomposition, which will be discussed in Section 4.2.
Such kinetic characteristics was observed in all four experiments, as shown in Figure 4. In Stage 1, the injected flue gas diluted/reduced methane concentration around methane hydrate crystals, therefore, shifted the gas hydrate stability zone. The methane hydrate quickly dissociated and released more methane to the vapor phase. The increase of the methane concentration made the system to approach a new thermodynamic equilibrium. In Stage 2, the methane concentration gradually rose to such a level that the system became very close to equilibrium. As a result, the methane hydrate decomposition was quickly slowed down. In fact, in the following discussion, it will be seen that mixed hydrates (e.g., CO₂-CH₄) formation was also occurring, which reduced the increasing rate of the methane in the vapor. Table 2 presents the experimentally determined methane concentrations and release rates at the end of the methane decomposition Stages 1 and 2. Most of the methane was recovered very quickly in Stage 1. In Stage 1 the methane recovery rate was more than 100 times higher than in Stage 2.

Figure 3 Methane recovery process was divided into three stages (Experiment 1)

Figure 4 Changes in methane content after the flue gas was injected
Table 2 Determined methane concentration and CO₂ ratio in methane recovery by flue gas injection (Stages 1 and 2)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>T (K)</th>
<th>P (MPa)</th>
<th>Stage</th>
<th>CH₄ (mol%)</th>
<th>CO₂/(CO₂+N₂) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>1</td>
<td>273.3</td>
<td>4.2</td>
<td>1</td>
<td>15.9</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>42.9</td>
<td>53.3</td>
</tr>
<tr>
<td>2</td>
<td>278.1</td>
<td>7.2</td>
<td>1</td>
<td>7.6</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>36.0</td>
<td>47.8</td>
</tr>
<tr>
<td>3</td>
<td>282.1</td>
<td>10.7</td>
<td>1</td>
<td>11.5</td>
<td>35.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>35.7</td>
<td>46.9</td>
</tr>
<tr>
<td>4</td>
<td>284.2</td>
<td>13.8</td>
<td>1</td>
<td>21.5</td>
<td>38.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>38.8</td>
<td>46.7</td>
</tr>
</tbody>
</table>

4.2 Depressurisation

Depressurisation was performed at a series of pressure steps after the new thermodynamic equilibrium was reached at the set pressure. The system was maintained at each pressure step over 24 hours to ensure equilibrium was achieved. Figure 5 illustrates how the methane was recovered during depressurisation. In Figure 5 the vertical dotted lines indicate the methane hydrate dissociation pressures at the corresponding experimental temperatures. The presence of the flue gas made it possible to produce methane from the methane hydrate by depressurisation well above the methane hydrate dissociation pressure. For example, depressurisation can produce the gas with more than 65 mol% methane at a pressure about 0.7 MPa above the methane hydrate dissociation pressure at 273.3 K (Experiment 1), with about 60 mol% methane at a pressure about 0.8 MPa above the methane hydrate dissociation pressure at 278.1 K (Experiment 2), and with 55 mol% methane at a pressure about 1.4 MPa above the methane hydrate dissociation pressure at 282.1 K (Experiment 3). In Experiment 4 the methane hydrate was almost fully decomposed before depressurisation so that no much more methane was released during depressurisation before the system pressure became lower than the methane hydrate dissociation pressure, i.e., 8.1 MPa at 284.2 K.
Figure 5 Methane hydrate starts decomposition well inside the methane HSZ

Injection of flue gas leads to methane hydrate decomposition at a pressure well above the methane hydrate dissociation pressure. This may make it possible to minimize the required depressurization degree of a hydrate reservoir to be able to produce methane gas from the hydrate. Minimized depressurization means limited pressure difference between the hydrate reservoir and the production well, hence less driving force for water flow and sand migration. Furthermore, the remaining reservoir pressure will also eliminate or reduce the requirement of external pumps to lift the produced water to allow the gas flow [8]. This could substantially improve the feasibility of the depressurization method for severe gas hydrate reservoir conditions such as low permeable Class 1 hydrate deposits with low permeability, Classes 2 and 3 that are deep inside the HSZ, and dispersive distributed hydrate deposits [12].

4.3 CO2 sequestration

The potential of the flue gas injection method was also examined for CO2 capture and storage in hydrate reservoirs. In Figure 6 the ratio of CO2/(CO2 + N2) is used as an indicator of the reduction of the absolute CO2 content due to formation of CO2 hydrate or CO2-involved mixed hydrates, given that N2-CH4 and N2-CO2 hydrates cannot form at the experimental conditions
according to thermodynamic modelling. The concentrations of CO$_2$, nitrogen, and methane are also plotted in Figure 6 to enable analysis of the kinetic process of CO$_2$-involved hydrate formation.

![Figure 6](image)

Figure 6 Changes in CO$_2$ content in vapour phase after flue gas injection and during depressurisation

In Stages 1 and 2, methane hydrate continuously dissociated as its phase equilibrium was broken by the injected flue gas, which leads to reduction in the concentration of CO$_2$ and nitrogen. Most importantly, the CO$_2$ ratio also continuously decreased. The reduction in the CO$_2$ ratio suggests that the CO$_2$ molecules in the vapour phase were converted into hydrates.
Thermodynamically, the CO$_2$ could be trapped in any types of a simple CO$_2$ hydrate, CO$_2$-CH$_4$ hydrate, and N$_2$-CO$_2$-CH$_4$ hydrate. The CO$_2$ content decreased to the minimum value at the end of Stage 2, where a new thermodynamic equilibrium was reached. In Experiments 1 to 3, the CO$_2$ ratio kept rising during depressurisation, indicating CO$_2$ was being released from decomposition of those mixed CO$_2$ hydrates. According to thermodynamic modelling, the N$_2$-CO$_2$-CH$_4$ hydrate was dissociated before the system was depressurised out of the methane HSZ, while the CO$_2$-CH$_4$ hydrate could not fully dissociate until the system was depressurised out of the CO$_2$ HSZ. However, the appearance of the maximum methane concentration implies that the methane hydrate and CO$_2$-CH$_4$ mixed hydrate were fully dissociated at the second last point at (273.3 K, 2.80 MPa) in Experiment 1, at the third last point (278.1 K, 2.99 MPa) in Experiment 2, at the third last point (281.1 K, 5.88 MPa) in Experiment 3, and at the fourth last point (284.2 K, 13.87 MPa) in Experiment 4. In Figure 6 more CO$_2$ was released from CO$_2$ hydrate at the last point at (273.3 K, 0.85 MPa) in the Experiment 1 plot, the last point at (278.1 K, 1.72 MPa) in the Experiment 2 plot, and the last point at (281.1 K, 3.79 MPa) in the Experiment 3 plot, where these points were outside the CO$_2$ HSZ. There was no such a rise in the CO$_2$ content observed, as Experiment 4 was conducted just outside the CO$_2$ HSZ, as shown in Figure 1.

Table 3 The amount of CO$_2$ in the vapour phase captured in hydrates*

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Temperature (K)</th>
<th>CO$_2$ in vapour (mole)</th>
<th>CO$_2$ in hydrates (mole)</th>
<th>CO$_2$ in hydrates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>273.3</td>
<td>0.0358</td>
<td>0.0106</td>
<td>0.0252</td>
</tr>
<tr>
<td>2</td>
<td>278.1</td>
<td>0.0561</td>
<td>0.0177</td>
<td>0.0384</td>
</tr>
<tr>
<td>3</td>
<td>282.1</td>
<td>0.1369</td>
<td>0.0710</td>
<td>0.0659</td>
</tr>
<tr>
<td>4</td>
<td>284.2</td>
<td>0.1287</td>
<td>0.1096</td>
<td>0.0191</td>
</tr>
</tbody>
</table>

* CO$_2$ dissolution in water is small and negligible compared to inclusion in gas hydrates.
Table 3 shows the amount of CO$_2$ in the vapour phase captured in hydrates. The initial CO$_2$ content was measured in the vapour phase after completion of purging the remaining methane and the final CO$_2$ content was measured at the end of Stage 2 prior to depressurisation. 70.4%, 68.5%, 48.1%, and 14.8% of CO$_2$ initially in the vapour phase were captured and retained in the hydrates in the porous media in Experiments 1 to 4, respectively. This demonstrates two advantages over the conventional hydrate-based CO$_2$ capture (HBCC) method. A multi-stage HBCC process with 1 mol% tetra-n-butyl ammonium bromide has to be applied to achieve the CO$_2$ split fractions similar to those that was gained in Experiments 1 and 2 [43]. The CO$_2$ hydrate formation not only directly capture CO$_2$ from the flue gas and store it in the hydrate reservoir formation, but also could reduce the impact of methane hydrate decomposition on the wellbore and seafloor stability. Furthermore, the results suggest that deepness inside the CO$_2$ hydrate HSZ plays a substantial role in the CO$_2$ sequestration from the flue gas, given that the four experiments were conducted in a similar deepness inside the methane hydrate phase boundary (Figure 1). This is understandable because the conditions deeply inside the CO$_2$ HSZ would provide stronger driving force to promote formation of more CO$_2$ hydrate, CO$_2$-CH$_4$ hydrate, and N$_2$-CO$_2$-CH$_4$ hydrate. If taking into account the sharp slope change in CO$_2$ hydrate phase boundary at about 282 K, it would be generally suggest that the hydrate reservoirs at low temperatures could be better choices for CO$_2$ capture and storage by flue gas injection.

5 Discussions

Methane recovery by flue gas injection involves complex reactions. Figures 3 and 4 show that the methane hydrate quickly dissociated once the flue gas was introduced into the sand pack containing methane hydrate, methane gas, and water. In an in-situ hydrate reservoir the rate of the methane hydrate decomposition may be dominantly controlled by heat transfer in Stage 1 due to the fast heat absorption from the endothermic reaction of methane hydrate decomposition [41]. In Stage 2 the methane hydrate decomposed very slowly as the methane-
carbon dioxide-nitrogen mixture was approaching the new phase equilibrium with the remaining methane hydrate. Fresh flue gas-rich gas mixture is needed to continue dissociating the methane hydrate. The permeability of the porous media will be important for the mass transfer process. In other words, the methane recovery rate may be mainly constrained by mass transfer in Stage 2. Moreover, in addition to methane hydrate decomposition, the kinetics of the methane recovery by flue gas injection is rather more complex compared to conventional depressurisation, thermal stimulation, and CO₂-CH₄ replacement. Flue gas injection results in formation of various hydrates such as CO₂ hydrate, CO₂-CH₄ hydrate, N₂-CO₂-CH₄ hydrates, and possible CO₂ replacement as well. The existing kinetic models [44] need to be coupled with a thermodynamic model to be able to simulate the kinetic process of methane recovery by flue gas injection.

In Figure 6 it can be seen that the CO₂ ratio to the sum of CO₂ and nitrogen kept increasing till the system was depressurised out of the CO₂ HSZ. The ratio became much higher than its initial value. This is attributed to the fact that some of the CO₂ hydrate, N₂-CO₂-CH₄ hydrate, and N₂-CO₂ hydrate could be formed during the flue gas injection and the purge of the remaining methane, which was not measured in the first gas sample. Thermodynamically, the N₂-CO₂-CH₄ hydrate can stay as long as the system pressure is higher than the methane hydrate dissociation pressure, while the formed CO₂ hydrate and CO₂-CH₄ hydrate can stay as long as the system is not depressurised out of the CO₂ HSZ. This feature can enhance the security to retain CO₂ in the hydrate reservoir formation when methane is recovered.

The amplitude of the shift in the required depressurization pressure depends on the methane content in the produced gas. For example, in Experiment 2 at 278.1 K (Figure 5), about 66 mol% methane in the vapor phase needs to depressurize the system to 0.5 MPa above the methane hydrate dissociation pressure, 53 mol% and 48 mol% methane need 1.3 MPa and 2.7 MPa above the methane hydrate dissociation pressure, respectively. Methane is recovered in a
CH₂-N₂-CO₂ mixture. Therefore, gas separation is required to separate the methane from the produced methane-rich gas mixtures containing nitrogen and residual CO₂, which might constrict the cost effectiveness of the flue gas injection method to some extent. Fortunately, there are some gas separation technologies that have been used to separate methane from the CH₄-N₂ and CH₄-N₂-CO₂ gas mixtures for the enhanced coalbed methane recovery (ECBM) [45]. It was found that polyimide membranes could be used to separate N₂ or CO₂ from natural gases [46]. White et al. indicated that removal of N₂ from ECBM gas mixtures is economically feasible for N₂ content up to 30% [47].

6 Conclusions

Flue gas injection into gas hydrate-bearing sediments was experimentally investigated for methane recovery and CO₂ sequestration. The results show that injection of the flue gas results in fast dissociation of the methane hydrate by shifting the methane hydrate stability zone. The methane concentration in the vapour phase reached over 50 mol% at the typical methane hydrate reservoir conditions from 273.3 K and 4.2 MPa to 284.2 K and 13.8 MPa. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure produced methane in methane-rich gas mixtures and the methane concentration could be up to 80 mol%, depending on the experimental temperature and pressure. It was also found that CO₂ hydrate and some CO₂ mixed hydrates such as N₂-CO₂-CH₄ hydrate and CO₂-CH₄ hydrate were formed during the methane recovery after the flue gas was injected. About 70% of the CO₂ in the flue gas was converted into hydrates and retained in the silica sand pack. As a result, the flue gas injection method has considerable potentials to improve the economic viability and feasibility of methane recovery from gas hydrate reservoirs and CO₂ capture and storage in geological formations.

Acknowledgments
This work was financially supported by the Skolkovo Institute of Science and Technology, Russia, which is acknowledged gratefully.

References

