Genome Sequence of *Marinobacter* sp. Strain MCTG268 Isolated from the Cosmopolitan Marine Diatom *Skeletonema costatum*

Tony Gutierrez,a William B. Whitman,b Marcel Huntteman,a Alex Copeland,a Amy Chen,a Nikos Kyripides,b Victor Markowitz,b Manoj Pillay,c Natalia Ivanova,d Natalia Mikhailova,d Galina Ovchinnikova,d Evan Andersen,d Amrita Pati,a Dimitrios Stamatis,c T. B. K. Reddy,e Chew Yee Ngane, Manasi Chovatia,f Chris Daum,f Nicole Shapiro,f Michael N. Cantort, and Tanja Woykef

School of Life Sciences, Heriot-Watt University, Edinburgh, United Kingdom; Department of Microbiology, University of Georgia, Athens, Georgia, USA; DOE Joint Genome Institute, Walnut Creek, California, USA.

*Marinobacter* sp. strain MCTG268 was isolated from the cosmopolitan marine diatom *Skeletonema costatum* and can degrade oil hydrocarbons as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 4,449,396 bp with 4,157 genes and an average G+C content of 57.0%.

Received 12 July 2016 Accepted 18 July 2016 Published 8 September 2016


Copyright © 2016 Gutierrez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Address correspondence to Tony Gutierrez, Tony.gutierrez@hw.ac.uk.

*Marinobacter* sp. strain MCTG268 was isolated from a laboratory culture of the marine diatom *Skeletonema costatum* (CCAP 1077/1C) by enrichment with naphthalene as the sole carbon source. Based on 16S RNA gene sequence identity, the closest type species is *Marinobacter algicola* strain DG893, which had also been isolated from a laboratory culture of eukaryotic phytoplankton (1).

Here, we report the genome sequence of *Marinobacter* sp. strain MCTG268. Genomic DNA was sequenced through the DOE Joint Genome Institute 2014 Genomic Encyclopedia of Type Strains, Phase III study (2) using Pacific Biosciences (PacBio) technology. A Pacbio SMRTbellTM library was constructed and sequenced on the PacBio RS platform, which generated 220,290 filtered subreads totaling 696.2 Mbp. All general aspects of library construction and sequencing performed at the JGI can be found at http://www.jgi.doe.gov. The raw reads were assembled using HGAP (version: 2.1.1) (3). The final draft assembly produced 14 scaffolds containing 14 contigs totaling 4.4 Mbp in size and input read coverage of 222.5×.

Project information is available in the Genomes Online Database (4). Genes were identified using Prodigal (5), followed by a round of manual curation using GenePRIMP (6) as part of JGI’s annotation pipeline (7). The predicted coding sequences (CDSs) were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant, UniProt, TIGRFam, Pfam, KEGG, COG, and InterPro databases. The tRNAscanSE tool (8) was used to find tRNA genes, whereas rRNA genes were found by searches against models of the rRNA genes built from SILVA (9). Other noncoding RNAs, such as the RNA components of the protein secretion complex and the RNase P, were identified by searching the genome for the corresponding Rfam profiles using INFERNAL (http://infernal.janelia.org). Additional gene prediction analysis and manual functional annotation was performed within the Integrated Microbial Genomes–Expert Review (IMG ER) platform (http://img.jgi.doe.gov) developed by the Joint Genome Institute, Walnut Creek, CA, USA (10).

The complete genome sequence length was 4,449,396 bp with a G+C content of 57.0%. The genome contains 4,157 genes (4,083 protein-coding genes) with functional predictions for 3,388 of them. A total of 74 RNA genes were detected. Other genes, characteristic for the genus, are given in the IMG database (10).

Accession number(s). The draft genome sequence of *Marinobacter* sp. strain MCTG268 obtained in this study was deposited in GenBank as part of BioProject no. PRJNA224116, with individual genome sequences submitted as whole-genome shotgun projects under the accession no. QJMK00000000.

ACKNOWLEDGMENTS

T.G. was supported by a Marie Curie International Outgoing Fellowship (PIOF-GA-2008-220129) within the 7th European Community Framework Program. The work was conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.

FUNDING INFORMATION

This work, including the efforts of Tony Gutierrez, was funded by European Commission (EC) (PIOF-GA-2008-220129). This work, including the efforts of Tony Gutierrez, William B. Whitman, Marcel Hunttemann, Alex Copeland, Amy Chen, Nikos C. Kyripides, Victor Markowitz, Manoj Pillay, Natalia Ivanova, Natalia Mikhailova, Galina Ovchinnikova, Evan Andersen, Amrita Pati, Dimitrios Stamatis, T. Reddy, Chew Ngan, Manasi Chovatia, Chris Daum, Nicole Shapiro, Michael Cantor, and Tanja Woyke, was funded by U.S. Department of Energy (DOE) (DE-AC02-05CH11231).

REFERENCES


Downloaded from http://genomea.asm.org on March 22, 2017 by Heriot Watt University


