Optimal Statistical Design of Variable Sample Size Multivariate Exponentially Weighted Moving Average Control Chart Based on Median Run-Length

Siow Yin Nyau\textsuperscript{a}, Ming Ha Lee\textsuperscript{a}, M. L. Dennis Wong\textsuperscript{b}

\textsuperscript{a}Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Malaysia;

\textsuperscript{b}Heriot-Watt University Malaysia, Putrajaya, Malaysia

*Email: snyau@swinburne.edu.my

Nyau Siow Yin, is a PhD Student from the Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Malaysia. She holds a Bachelor of Engineering in Mechanical Engineering from the same university. Her research interest is in statistical process control.

Ming Ha Lee, is a Senior Lecturer in the Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Malaysia. She obtained her PhD in Statistics from the Universiti Sains Malaysia. Her current research interest is statistical process control.

M.L. Dennis Wong, is a Professor at Heriot-Watt University Malaysia. He received his BEng (Hons) and PhD from the Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK. His current research interests include statistical pattern classification, machine condition monitoring, and biometrics template protection.
Optimal Statistical Design of Variable Sample Size Multivariate Exponentially Weighted Moving Average Control Chart Based on Median Run-Length

Conventionally, a standard control chart implements fixed sample size in process monitoring. In this study, we propose an optimal statistical design for the variable sample size (VSS) multivariate exponentially weighted moving average (MEWMA) chart based on the median run-length (MRL). The proposal is based on the fact that the percentiles of the run-length distribution, especially the MRL, are more reflective and reliable for performance evaluation with respect to a skewed run-length distribution. The MRL for the VSS MEWMA chart computed using the Markov chain approach is verified with Monte Carlo simulation. For benchmarking purposes, the performance of the VSS MEWMA chart is compared against the standard MEWMA chart and the synthetic $T^2$ chart, in terms of the MRL. The numerical results show that the VSS MEWMA chart performs better than the standard MEWMA chart and the synthetic $T^2$ chart, in detecting shifts in the process mean vector. Finally, an application is provided as an illustration for the implementation of the VSS MEWMA chart based on the MRL.

Keywords: Markov chain approach; median run-length; multivariate exponentially weighted moving average chart; variable sample size
1. Introduction

A control chart illustrates the state of a process over time to detect and minimize variability in the process monitoring. Recently, considerable efforts have been undertaken on the research of various multivariate control charts since the quality of a product is usually affected by multiple characteristics of the product (Qiu, 2013). Bersimis, Psarakis, and Panaretos (2007); and Lowry and Montgomery (1995) reviewed the procedures for the implementation of the multivariate control charts. For literature on the multivariate control charts, refer to Chen, Zi, and Zou (2016); Cheng and Mao (2011); Das (2009); Ghute and Shirke (2008b); Lee (2013); Li, Tsung, and Zou (2014); Maboudou-Tchao and Diawara (2013); Reynolds and Cho (2011); Seif, Faraz, and Sadeghifar (2015); Zi, Zou, Zhou, and Wang (2013); and Zou and Tsung (2011).

The variable sample size (VSS) scheme is one of the methods used to improve the efficiency of control charts, whereby the sample size can be varied according to the plotted statistics on the chart. According to Lee (2010), the multivariate exponentially weighted moving average (MEWMA) chart with the VSS scheme is proven to be more effective than the standard MEWMA chart for monitoring the process mean vector, in terms of the average run-length (ARL). Hence, the VSS scheme is adopted in this study to statistically improve the performance of the MEWMA chart. Besides, this study complements the work by Lee (2010) by using the median run-length (MRL) as a performance measure. As such, the main objective of this study is to design an optimal VSS MEWMA chart based on the MRL for monitoring the process mean vector.

The outline of the rest of this article is as follows: Section 2 briefly reviews the MRL, the MEWMA chart and the VSS scheme. Section 3 discusses the properties of the VSS MEWMA chart. In Section 4, the Markov chain approach described in Runger and Prabhu (1996) is modified to evaluate the performance of the VSS MEWMA chart.
based on the $MRL$ for both zero-state and steady-state cases. Section 5 highlights the optimal statistical design of the VSS MEWMA chart based on the $MRL$. The run-length distribution is illustrated in Section 6 for a better understanding of the VSS MEWMA chart. A detailed comparative study is presented in Section 7. An illustrative example is given in Section 8 to demonstrate the application of the VSS MEWMA chart. Finally, Section 9 summarizes the main findings and concludes the paper.

2. Literature Review

This section briefly reviews the major concepts of this study. These include the $MRL$, the MEWMA chart and the VSS scheme to better understand this study.

2.1 MRL

The common performance measure of a control chart is the $ARL$. However, the sole reliance on the $ARL$ has been subject to criticism in recent years (Montgomery, 2013). As pointed out by Gan (1993); Golosnoy and Schmid (2007); and Palm (1990), the run-length distribution is highly skewed when the process is in control and nearly symmetrical at a larger shift. Therefore, the conclusion based on the $ARL$ can be misleading as it is not necessarily a typical run-length.

The works of Dyer, Adams, and Conerly (2003) and Maravelakis, Panaretos, and Psarakis (2005) confirmed that the $MRL$ is a more credible performance measure for a control chart as it is less affected by the skewness of the run-length distribution. In addition, more researchers such as Chakraborti (2007); Chin and Khoo (2012); Graham, Mukherjee, and Chakraborti (2012); Khoo, Teh, Chuah, and Foo (2011); Khoo, Wong, Wu, and Castagliola (2012); Khoo, Wong, Wu, and Castagliola (2011); Low, Khoo, Teoh, and Wu (2012); Mukherjee and Marozzi (2016b); and Teoh, Khoo, and Teh (2013) advocated using the $MRL$ as an alternative measure for their proposed control
charts. Following these researchers, this study proposes to make use of the MRL as the performance measure.

2.2 MEWMA Chart

The MEWMA chart was introduced by Lowry, Woodall, Champ, and Rigdon (1992) as an extension of the univariate exponentially weighted moving average chart. Runger and Prabhu (1996) applied the Markov chain approach to evaluate the performance of the MEWMA chart based on the ARL. Molnau et al. (2001) presented a computer program for computing the ARL values of the MEWMA chart. For the recent developments in the design of the MEWMA chart, see Aly, Mahmoud, and Hamed (2016); Mahmoud and Maravelakis (2010); Mahmoud and Zahran (2010); Park and Jun (2015); and Shen, Tsung, and Zou (2014).

2.3 VSS Scheme

The VSS scheme is implemented in such a way that a large sample size will be used if there is an indication of a possible variation in the process; whereas a small sample size will be used if there is no such indication. It is known that the VSS scheme improves the statistical efficiency of control charts in detecting process shifts. Therefore, the VSS scheme has been studied extensively among researchers. For example, see Aparisi (1996); Aparisi, Epprecht, Carrión, and Ruiz (2014); Castagliola, Achouri, Taleb, Celano, and Psarakis (2015); Castagliola, Zhang, Costa, and Maravelakis (2012); Faraz and Moghadam (2009); Huang, Shu, Woodall, and Tsui (2016); Kooli and Limam (2011); and Prabhu, Runger, and Montgomery (1997).

3. Properties of the VSS MEWMA Chart

Let $X_{vkt}$ denote observation $v$ for quality characteristic $k$ at sampling point $t$, where $v = 1,$
2, 3, …, n; k = 1, 2, 3, …, p and t = 1, 2, 3, …. It is assumed that the process is normally
distributed with independent and identical observations. The sample mean for the
quality characteristic k at the sampling point t is given as

\[
\bar{X}_{kt} = \frac{1}{n} \sum_{v=1}^{n} X_{kv}\tag{1}
\]

Then, the sample mean vector at the sampling point t is \( \tilde{X}_t = (\bar{X}_{1t}, \bar{X}_{2t}, \bar{X}_{3t}, \ldots, \bar{X}_{pt})^T \). It is assumed that \( \tilde{X}_t \) has a multivariate normal distribution with mean vector \( \tilde{\mu} = (\mu_1, \mu_2, \ldots, \mu_p)^T \) and \( p \times p \) covariance matrix \( \tilde{\Sigma} \). The standardized sample mean for the quality characteristic k at the sampling point t is

\[
Z_{kt} = \frac{\bar{X}_{kt} - \mu_{0k}}{\sigma_{0k}} \tag{2}
\]

where \( \mu_{0k} \) is the kth component of the in-control process mean vector \( \tilde{\mu}_0 \) and \( \sigma_{0k} \) is the kth component of the in-control process standard deviation vector \( \tilde{\sigma}_0 \). The standardized sample mean vector at the sampling point t is given as \( \tilde{Z}_t = (Z_{1t}, Z_{2t}, Z_{3t}, \ldots, Z_{pt})^T \), then \( \tilde{Z}_1, \tilde{Z}_2, \tilde{Z}_3, \ldots \) are vectors with \( p \) components. The MEWMA vector proposed by Lowry et al. (1992) is defined as

\[
\tilde{W}_t = r\tilde{Z}_t + (1 - r)\tilde{W}_{t-1} \tag{3}
\]

for \( t = 1, 2, 3, \ldots \), where \( \tilde{W}_0 = \tilde{0} \) and \( 0 < r \leq 1 \) is the smoothing constant. Hence, the
MEWMA chart has the plotted chart statistics
\[
T_t^2 = W_t^T \tilde{\Sigma}_w^{-1} \tilde{W}_t, \tag{4}
\]
for \( t = 1, 2, 3, \ldots \), where \( \tilde{\Sigma}_w \) is the covariance matrix of \( \tilde{W}_t \). In this study, the asymptotic covariance matrix \( \tilde{\Sigma}_w = \left( \frac{r}{2 - r} \right) \tilde{\Sigma}_z \) is used, where \( \tilde{\Sigma}_z \) is the correlation matrix of \( \tilde{Z}_t \). Note that \( \tilde{\Sigma}_z \) is the covariance matrix \( \tilde{\Sigma} \) in correlation form. An out-of-control signal is triggered when \( T_t^2 > H \), where \( H > 0 \) is the control limit. The control limit \( H \) is chosen to provide a specific value for the in-control performance measure.

Lowry et al. (1992) showed that the MEWMA chart is directionally invariant. In other words, they showed that the ARL performance of the MEWMA chart is determined solely by the distance of the out-of-control process mean vector \( \tilde{\mu} = \tilde{\mu}_1 \) from the in-control process mean vector \( \tilde{\mu} = \tilde{\mu}_0 \). This distance is defined as the square root of the non-centrality parameter, which is the size of a shift \( \delta = \sqrt{\tilde{\nu}^T \tilde{\Sigma}_z^{-1} \tilde{\nu}} \), where \( \tilde{\nu} \) is the standardized mean vector. Here, the \( k \)th component of \( \tilde{\nu} \) is \( \nu_k = (\mu_k - \mu_{0k})/\sigma_{0k} \), where \( \mu_{0k} \) is the \( k \)th component of the in-control process mean vector \( \tilde{\mu}_0 \) and \( \sigma_{0k} \) is the \( k \)th component of the in-control process standard deviation vector \( \tilde{\sigma}_0 \). Because of the directional invariance property of the MEWMA chart, the value of the performance measure is the same for any out-of-control process mean vectors that have the same distance from the in-control process mean vector. It is assumed that \( \tilde{\Sigma}_z \) is an in-control process correlation matrix since \( \tilde{\Sigma}_z \) remains constant.

For the standard MEWMA chart, the sample size is being fixed as \( n_0 \); whereas for the VSS MEWMA chart, a warning limit \( w \) is introduced, such that \( 0 < w < H \). The value of \( w \) acts as an indicator for the change in the sample size, such that \( n_1 < n_0 < n_2 \).
where $n_1$ is the small sample size and $n_2$ is the large sample size. The values of $n_1$ and $n_2$ in the VSS MEWMA chart are chosen in order to obtain an average sample size $E(n) = n_0$. This two-sample size chart consists of three regions which are the safety, warning and action regions. The function of the two-state VSS MEWMA chart is defined as

$$n = \begin{cases} 
  n_1 & \text{if } T_i^2 \leq w \\
  n_2 & \text{if } w < T_i^2 \leq H
\end{cases}.$$ 

If the current sample falls inside the safety region ($T_i^2 \leq w$), a sample of size $n_1$ will be taken at the next sampling point; whereas if the current sample falls inside the warning region ($w < T_i^2 \leq H$), a sample of size $n_2$ will be taken at the next sampling point. An out-of-control signal will be triggered if the current sample falls inside the action region ($T_i^2 > H$). When the process is just starting or after a false alarm, the first sample size can be chosen at random. Alternatively, it may be preferable to use tightening control, which is the large sample of size $n_2$ as it provides an extra protection against problems that may arise during start-up. The operation procedure of the VSS MEWMA chart is as follows:

1. Take a sample of size $n_2$.
2. Calculate the plotted chart statistic $T_i^2$.
3. The current sample position of $T_i^2$ determines the size of the sample at the next sampling point such that:
   a. if the current sample falls inside the safety region ($T_i^2 \leq w$), a sample of size $n_1$ will be taken at the next sampling point since there is no apparent risk in the process and the control flows back to Step 2.
b. if the current sample falls inside the warning region \((w < T_i^2 \leq H)\), a sample of size \(n_2\) will be taken at the next sampling point and the control flows back to Step 2.

For these two cases, the sample is considered as conforming. Otherwise, the sample is considered to be nonconforming and the control flows to the next step.

\[(4)\] The current sample falls inside the action region \((T_i^2 > H)\), an out-of-control signal would be triggered. Search and eliminate the assignable cause(s). Then, the control flows back to Step 1.

4. Markov Chain Approach

Runger and Prabhu (1996) developed a Markov chain approach to calculate the \(ARL\) of the MEWMA chart. In this study, the Markov chain approach of Runger and Prabhu (1996) is modified to evaluate the performance of the VSS MEWMA chart based on the \(MRL\). Let \(T_i^2 = b \| \hat{W}_i \|\), where \(b = (2 - r)/r\) and the statistic \(q_i = \| \hat{W}_i \|\) is plotted with \(q_i\) being a measure of distance in \(p\)-dimensional space, then \(UCL = \sqrt{H/b}\) and \(UWL = \sqrt{w/b}\). Runger and Prabhu (1996) have shown that the out-of-control \(ARL\) \((ARL_1)\) of the standard MEWMA chart with the fixed sample size can be analyzed by using a two-dimensional Markov chain, in which \(\tilde{W}_i\) is partitioned into \(W_{i1}\) and \(\| \tilde{W}_{i2} \|\). In this study, modifications are necessary to obtain the \(MRL\) of the VSS MEWMA chart. The horizontal transition probability of \(W_{i1}\) is used to analyze the out-of-control component. Let \(m\) be the number of states of the Markov chain, then the horizontal transition probability of \(W_{i1}\) from state \(i_x\) to state \(j_x\) is denoted by
\[ h(i_x, j_x) = \Phi \left[ -\frac{\text{UCL} + j_x g - (1 - r)c_{i_x} - \delta \sqrt{n}}{r} \right] - \Phi \left[ -\frac{\text{UCL} + (j_x - 1)g - (1 - r)c_{i_x} - \delta \sqrt{n}}{r} \right], \tag{5} \]

for \( i_x, j_x = 1, 2, ..., 2m + 1 \), where \( \Phi(\cdot) \) represents the cumulative probability distribution function of a standard normal random variable with \( c_{i_x} = -\text{UCL} + (i_x - 0.5)g \) be the centerpoint of state \( i_x \); \( g = 2\text{UCL}/(2m + 1) \) is the width of each state and \( n \) is the sample size.

The vertical transition probability of \( \hat{W}_t \) is used to analyze the in-control component. For \( i_y = 0, 1, 2, ..., m \) and \( j_y = 1, 2, ..., m \), the vertical transition probability of \( \hat{W}_t \) from state \( i_y \) to state \( j_y \) is denoted by

\[ v(i_y, j_y) = \Pr \left[ \frac{(j_y - 0.5)^2 g^2}{r^2} < \chi^2(p - 1, c) < \frac{(j_y + 0.5)^2 g^2}{r^2} \right] \tag{6} \]

where \( \chi^2(p - 1, c) \) is a non-central chi-square random variable with \( (p - 1) \) degrees of freedom and non-centrality parameter \( c = \left[ (1 - r)i_y g / r \right]^2 \). For \( j_y = 0 \),

\[ v(i_y, 0) = \Pr \left[ \chi^2(p - 1, c) < \frac{0.5^2 g^2}{r^2} \right]. \tag{7} \]

The transition probability of the bivariate model from state \((i_x, i_y)\) to state \((j_x, j_y)\) is \( \Pr[(i_x, i_y), (j_x, j_y)] = h(i_x, j_x)v(i_y, j_y) \) and the value of \( n \) in Equation (5) is given as

\[ n = \begin{cases} n_1 & \text{if } [i_x - (m + 1)]^2 g^2 + i_y^2 g^2 \leq \text{UWL}^2 \\ n_2 & \text{if } \text{UWL}^2 < [i_x - (m + 1)]^2 g^2 + i_y^2 g^2 \leq \text{UCL}^2 \\ 0 & \text{otherwise} \end{cases} \tag{8} \]
where \( n = n_1 \) if state \((i_x, i_y)\) falls inside the safety region \( (T_i^2 \leq w) \) and \( n = n_2 \) if state \((i_x, i_y)\) falls inside the warning region \( (w < T_i^2 \leq H) \). Then, \( \mathbf{n} = \{(1, 0), (1, 1), (1, 2), (1, 3), \ldots, (1, m), (2, 0), (2, 1), (2, 2), (2, 3), \ldots, (2, m), (3, 0), (3, 1), (3, 2), (3, 3), \ldots, (3, m), \ldots, (2m + 1, 0), (2m + 1, 1), (2m + 1, 2), \ldots, (2m + 1, m)\}^T \) is a \((2m + 1)(m + 1)\) vector. When \( n_1 = n_2 = n_0 \) and \( H = w \), the VSS MEWMA chart becomes the standard MEWMA chart. Interested readers are referred to Runger and Prabhu (1996) for more details on the horizontal and vertical transition probabilities.

Let \( \mathbf{Q} \) denote the \((2m + 1)(m + 1) \times (2m + 1)(m + 1)\) transition probability matrix of the two-dimensional Markov chain. Then \( \mathbf{Q} = \mathbf{H} \otimes \mathbf{V} \), where \( \otimes \) is the Kronecker product of the matrices, \( \mathbf{H} \) is the horizontal transition probability matrix and \( \mathbf{V} \) is the vertical transition probability matrix. Let \( \mathbf{T} \) denote a \((2m + 1)(m + 1) \times (2m + 1)(m + 1)\) matrix with

\[
\mathbf{T}(i_x, i_y) = \begin{cases} 
1 & \text{if state } (i_x, i_y) \text{ is a transient state} \\
0 & \text{if state } (i_x, i_y) \text{ is an absorbing state} 
\end{cases} \quad (9)
\]

Let \( \mathbf{Q}_t \) be the transition probability matrix that contains the transient states of the bivariate Markov chain, then \( \mathbf{Q}_t = \mathbf{T} \otimes \mathbf{Q} \), where \( \otimes \) denotes the element-wise multiplication of the matrices.

In this study, the Markov chain with the number of states \( m = 25 \) is used to compute the performance measures of the VSS MEWMA chart. For a detailed explanation on the number of states for the Markov chain, refer to Molnau et al. (2001). Let \( R \) be the run-length of a control chart, then the zero-state cumulative run-length probability is computed as (Brook & Evans, 1972)
\[
\text{Pr}(R \leq r) = \tilde{s}^T (\tilde{I} - \tilde{Q}_r) \tilde{I},
\] (10)

for \( r = 1, 2, 3, \ldots \), where \( \tilde{Q}_r \) contains the transition probabilities of all the transient states in the Markov chain; \( \tilde{s} \) is the \((2m+1)(m+1)\) initial probability vector with a 1 in the \([m(m+1) + 1]\)th element corresponding to the starting state of the Markov chain and zeros elsewhere; \( \tilde{I} \) is the \((2m+1)(m+1)\) dimensional identity matrix and \( \tilde{I} \) is a \((2m+1)(m+1)\) vector with unit entries. The zero-state run-length probability for a control chart is defined by Brook and Evans (1972) as

\[
\text{Pr}(R = r) = \tilde{s}^T \tilde{Q}_r^{-1} (\tilde{I} - \tilde{Q}_r) \tilde{I}. \tag{11}
\]

For the steady-state case, the initial probability vector \( \tilde{s} \) in Equations (10) and (11) is replaced with the steady-state probability vector

\[
\tilde{s}_0 = (\tilde{I}^T \tilde{q})^{-1} \tilde{q}, \tag{12}
\]

as proposed by Champ (1992). Here, \( \tilde{q} = \left(\tilde{G} - \tilde{Q}_0^T\right)^{-1} \tilde{u} \), where

\[
\tilde{G} = \begin{pmatrix}
2 & 1 & 1 & \cdots & 1 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{pmatrix}
\]

is a \((2m+1)(m+1) \times (2m+1)(m+1)\) matrix; \( \tilde{Q}_0 \) is constructed by dividing each element of \( \tilde{Q}_r \) by the sum of its row with \( \delta = 0 \) and \( \tilde{u} = (1, 0, 0, \ldots, 0)^T \). Then, the steady-state cumulative run-length probability is computed as

\[
\text{Pr}(R \leq r) = \tilde{s}_0^T (\tilde{I} - \tilde{Q}_r^T) \tilde{I}. \tag{13}
\]
Gan (1993) showed that the $100\gamma$th percentile can be calculated as

$$\Pr(R \leq r - 1) \leq \gamma \text{ and } \Pr(R \leq r) > \gamma.$$  \hfill (14)

The MRL of the VSS MEWMA chart can be computed by using $\gamma = 0.5$ in Equation (14). The zero-state MRL is used when the process mean vector shifts off-target ($\bar{\mu} = \bar{\mu}_1$) at the beginning of the process monitoring. On the other hand, the steady-state case assumes that the process mean vector is initially on-target ($\bar{\mu} = \bar{\mu}_0$) and the process stays in control for a period of time before the process mean vector shifts off-target ($\bar{\mu} = \bar{\mu}_1$) at some random time in the future (Stoumbos, Mittenthal, & Runger, 2001). Here, the steady-state performance is considered as the time from the shift in the process mean vector until a signal. In most practical situations, the process usually starts in control and an assignable cause shifts the process mean vector at some random time in the future. Hence, the steady-state performance is generally more important than the zero-state performance when $\delta \neq 0$ (Haq & Khoo, 2016; Mukerjee & Marozzi, 2016a).

The zero-state in-control average run-length and the zero-state in-control average number of observations to signal for the VSS MEWMA chart (Lee, 2010) are

$$ARL_0 = \bar{s}^T (\bar{I} - \bar{Q}_i)^{-1} \bar{I}$$  \hfill (15)

and

$$ANOS_0 = \bar{s}^T (\bar{I} - \bar{Q}_i)^{-1} \bar{n},$$  \hfill (16)

respectively, where $\delta = 0$. Then, the in-control average sample size of the VSS MEWMA chart (Lee, 2010) is given as
\[ E(n) = \frac{ANOS_0}{ARL_0}. \] 

5. Optimal Design of the VSS MEWMA Chart

In this study, the optimal statistical design of the VSS MEWMA chart is proposed by minimizing the out-of-control \( MRL_1 \). This involves the computation of the following optimal charting parameters: (i) \( r \): the smoothing constant, (ii) \( n_1 \): the small sample size, (iii) \( n_2 \): the large sample size, (iv) \( H \): the control limit and (v) \( w \): the warning limit. In developing the optimal statistical design, the following decision variables are considered: (i) \( p \): the number of quality characteristics, (ii) \( MRL_0 \): the desired in-control \( MRL \), (iii) \( E(n) \): the in-control average sample size and (iv) \( \delta_{opt} \): the shift in the process mean vector. Note that \( \delta_{opt} \) is the magnitude of shift in the process mean vector for which a quick detection is required.

The \( MRL_0 \) of a control chart should be large enough to minimize the false alarm rate. Conversely, the \( MRL_1 \) should be small, indicating a control chart that quickly detects shifts in the process mean vector. Referring to Graham, Chakraborti, and Mukherjee (2014), \( ARL_0 \approx 500 \) is used as the industry standard value and it corresponds to \( MRL_0 \approx 350 \). Hence, \( MRL_0 = 350 \) is chosen as the nominal target in this study.

Some constraints are considered for the optimal design of the VSS MEWMA chart based on the \( MRL \). For the VSS MEWMA chart, only two sample sizes are used, i.e. \( n_1 \) and \( n_2 \). The small sample size is set to be \( n_1 = 1, 2, \ldots, n_0 - 1 \) and the large sample size is set to be \( n_2 = n_0 + 1, n_0 + 2, \ldots, 20 \), where \( n_1 < n_0 < n_2 \). Here, \( E(n) = n_0 \). Following Faraz and Moghadam (2009), the largest sample size is set as 20 because it is not realistic to have a large number of the sample size to be examined during the process quality control. In addition, Castagliola et al. (2012) stated that it is more
practical to have small and moderate sample sizes in industries. More importantly, the value of the large sample size was found to be optimized before it reaches $n_2 = 20$.

An exhaustive search algorithm is used to determine the optimal charting parameters ($r, n_1, n_2, H, w$) for the VSS MEWMA chart. The procedure for the optimal statistical design of the VSS MEWMA chart based on the $MRL$ is outlined below:

1. Specify the values of $MRL_0$, $E(n)$, $p$ and $\delta_{opt}$.
2. Initialize $r = 0.005$.
3. Given the $r$ value in Step 2, set the shift as $\delta = 0$, compute the control limit $H$ for the specified $MRL_0$, using Equation (14) with $\gamma = 0.5$.
4. For each value of $n_1 = 1, 2, \ldots, n_0 - 1$, compute the warning limit $w$ for the specified $MRL_0$ with the values of $n_2 = n_0 + 1, n_0 + 2, \ldots, 20$ to obtain $E(n) = n_0$, using Equation (17). Note that $w < H$.
5. Compute the $MRL_1$ at the specified $\delta_{opt}$ using Equation (14) with $\gamma = 0.5$.
6. Repeat Steps 3 to 5 for the values of $r$ from 0.01 to 0.10 with step size 0.005 and then for the values of $r$ from 0.11 to 1.00 with step size 0.01.
7. The combination of charting parameters $(r, n_1, n_2, H, w)$ that produces the minimum $MRL_1$ is recorded as the optimal charting parameters of the VSS MEWMA chart.

Since the $MRL$ is a distinct quantity, there can be a few combinations of the optimal charting parameters that will produce the same minimum value of $MRL_1$ for an interval of the smoothing constant $r$ at a particular $\delta_{opt}$. Here, the center value for the range of the optimal $r$ that produces the same minimum $MRL_1$ is selected as the optimal value of $r$.  

15
6. Run-length Distribution of the VSS MEWMA chart

Using the procedure of the optimal statistical design described in the previous section, the optimal charting parameters of the VSS MEWMA chart based on the zero-state case for $E(n) = 5$, $MRL_0 = 350$ and $p = 3$ at $\delta_{opt} = 0.50$ are obtained as $(r, n_1, n_2, H, w) = (0.30, 4, 13, 14.401, 5.869)$. The plots of the run-length probability distribution for this VSS MEWMA chart for $\delta = 0.00, 0.25, 0.50, 1.00, 2.00$ and 2.50 are given in Figure 1. Here, the run-length probabilities are calculated using Equation (11). Figure 1 shows that the run-length distribution of the VSS MEWMA chart is highly skewed when the process is in control ($\delta = 0$) or slightly out of control ($\delta = 0.25$); whereas at a larger shift, for example, when $\delta = 1.00$, the run-length distribution is almost symmetric. The changes in the shape of the run-length distribution according to the magnitude of shifts in the process mean vector clearly demonstrate that the run-length distribution for the VSS MEWMA chart is highly skewed to the right (positively skewed) when the process is in control to nearly symmetrical at the larger shifts.

The interpretation based on the $ARL$ with respect to a skewed run-length distribution would certainly be different from that based on the $ARL$ with respect to an almost symmetric distribution. Thus, the interpretation based on the $ARL$ can be confusing when the run-length distribution changes with the shift. On the other hand, the use of the $MRL$ is more readily comprehensible in providing information on the performance of a control chart with respect to the skewed run-length distribution.

Table 1 firstly provides the percentage points of the run-length for the steady-state VSS MEWMA chart with $p = 2$ at $\delta_{opt} \in \{0.50, 1.00\}$ for $E(n) = 5$ and $ARL_0 \approx 500$. The 1st, 5th, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th and 90th percentage points (or percentiles) of the run-length distribution are computed using Equation (14). Note that the 50th percentile is the $MRL$. It is observed that the $ARL_1$s are larger than the
corresponding \( MRL \) for all the given \( \delta_{\text{opt}} \) due to the skewed run-length distribution.

For example, when \( \delta_{\text{opt}} = 0.50 \), \( p = 2 \) and \( E(n) = 5 \) are considered, \( ARL_1 = 32.61 \) but \( MRL_1 = 24 \) at \( \delta = 0.25 \) for the VSS MEWMA chart with the optimal charting parameters \( (r, n_1, n_2, H, w) = (0.43, 1, 21, 12.228, 3.197) \). This shows that using the \( ARL \) as a performance measure for the control chart can be confusing and misleading as the average does not represent “half the time” (Palm, 1990).

Secondly, Table 1 shows that the difference between the \( ARL_1 \) and \( MRL_1 \) decreases as the shift \( \delta \) increases. The values of \( ARL_1 \) and \( MRL_1 \) are similar with a negligible difference (\( |ARL_1 - MRL_1| \leq 1.00 \)) at \( \delta \geq 1.50 \). For example, at \( \delta = 2.00 \), the VSS MEWMA chart with the optimal charting parameters \( (r, n_1, n_2, H, w) = (0.43, 1, 21, 12.228, 3.197) \) gives \( ARL_1 = 2.19 \) and \( MRL_1 = 2 \), where \( |ARL_1 - MRL_1| = 0.19 \). However, at a smaller shift, such as \( \delta = 0.25 \), the chart gives \( ARL_1 = 32.61 \) and \( MRL_1 = 24 \), where \( |ARL_1 - MRL_1| = 8.61 \).

Thirdly, Table 1 also provides information such as the early false alarm rates. The early false alarm rates can be obtained from the smaller percentage points, such as 1st, 5th and 10th percentiles of the run-length distribution under \( \delta = 0 \). For example, although the \( ARL_0 \) of the VSS MEWMA chart with \( (r, n_1, n_2, H, w) = (0.43, 1, 21, 12.228, 3.197) \) is given as 498.33, there is a 5% chance that a false alarm will be observed by the 26th sample.

Fourthly, Table 1 provides the higher percentage points of the run-length, in which a higher percentage point shows that an out-of-control signal will be triggered with a higher probability when the process shifts by a certain magnitude. For example, the VSS MEWMA chart with \( (r, n_1, n_2, H, w) = (0.43, 1, 21, 12.228, 3.197) \), there is a 90% chance that an out-of-control signal will be detected by the 71st sample for \( \delta = \)
0.25. In other words, this control chart signals within the first 71 samples with the probability of 0.9.

In addition, Table 1 shows that the $MRL_0$ value of the VSS MEWMA chart is less than the corresponding $ARL_0$ value. For example, for the VSS MEWMA chart with $(r, n_1, n_2, H, w) = (0.43, 1, 21, 12.228, 3.197)$, the $MRL_0$ is 346 while the $ARL_0$ is 498.33. Based on the entire run-length distribution, the $ARL_0$ lies between the 60th and 70th percentiles of the run-length distribution. This means that the in-control run-length distribution is skewed to the right. The $MRL_0$ of 346 indicates that a false alarm will be observed by the 346th sample in half the time.

From these results, it can be concluded that the percentiles of the run-length distribution provide a more meaningful interpretation for the in-control and out-of-control performances of the VSS MEWMA chart. Furthermore, the percentiles of the run-length distribution provide practitioners with a more comprehensive understanding of the behaviour of the VSS MEWMA chart.

7. Performance Comparison between the Control Charts based on the MRL

In this study, the performance of the VSS MEWMA chart is compared with the standard MEWMA chart and the synthetic $T^2$ chart based on the $MRL$. A brief review of the competing charts is provided in the following sub-sections.

7.1 Standard MEWMA chart

Lowry et al. (1992) presented the standard MEWMA chart where the statistical design involves the selection of the optimal charting parameters: (i) $r$: the smoothing constant and (ii) $H$: the control limit for which the sample size is fixed as $n_0$. For a detailed discussion for the optimal statistical design of the standard MEWMA chart based on the

7.2 Synthetic $T^2$ Chart

The synthetic $T^2$ chart is a combination of the Hotelling’s $T^2$ chart and the conforming run-length chart for monitoring the mean of a multivariate normal distribution process (Ghute & Shirke, 2008a). The statistical design of the synthetic $T^2$ chart involves the selection of the optimal charting parameters: (i) $L$: the lower control limit and (ii) $CL$: the upper control limit.

7.3 Performance Comparison between the Control Charts

Table 2 presents the optimal charting parameters for the VSS MEWMA chart, the standard MEWMA chart and the synthetic $T^2$ chart. For comparison purposes, the optimal charting parameters are obtained for shifts at $\delta_{opt} \in \{0.25, 0.50, 1.00, 1.50, 2.00, 2.50\}$ with $E(n) = 5$, $MRL_0 = 350$ and $p \in \{2, 3, 5\}$, where the $MRL_1$ is minimized at each $\delta_{opt}$. The $MRL_1$ for all the optimized charts are provided in Table 3. Note that the optimal charting parameters and the corresponding $MRL_1$ of the synthetic $T^2$ chart are obtained by adopting the methodology in Khoo et al. (2011). The $MRL_0$ of 350 indicates that a false alarm will be observed, within the first 350 samples, at least 50% of the time. When $\delta_{opt} \neq 0$, for example, at $\delta_{opt} = 0.25$ for $p = 2$, a zero-state $MRL_1$ of 17 for the VSS MEWMA chart (see Table 3) indicating there is a 50% chance that an out-of-control signal will be triggered by the 17th sample.

Table 3 shows that for the zero-state case, the VSS MEWMA chart outperforms the standard MEWMA chart and the synthetic $T^2$ chart for $\delta_{opt} \leq 0.50$; the synthetic $T^2$ chart only performs slightly better than the VSS MEWMA chart or the standard MEWMA chart for $1.00 \leq \delta_{opt} \leq 1.50$, the performance of the VSS MEWMA chart is the same as that of the standard MEWMA chart and the synthetic $T^2$ chart for $\delta_{opt} \geq 2.00$.
since all the control charts give the same \( MRL \) values. For the steady-state case, the VSS MEWMA chart performs consistently better or at least on a par with the standard MEWMA chart and synthetic \( T^2 \) chart in detecting small shifts \( (\delta_{\text{opt}} \leq 1.50) \), where all the \( MRL \) values of the VSS MEWMA chart are smaller than or equal to the standard MEWMA chart and the synthetic \( T^2 \) chart. The performance of the VSS MEWMA chart or the standard MEWMA chart is slightly better than the synthetic \( T^2 \) chart for \( \delta_{\text{opt}} \geq 2.00 \). From these results, it can be concluded that the VSS MEWMA chart performs better than the standard MEWMA chart and the synthetic \( T^2 \) chart, especially for the steady-state case.

Table 4 gives the quartile deviation of the run-length distribution \( (QDRL) \) for each of the optimized chart shown in Table 3. The \( QDRL \) defined as one-half the difference between the first and third quartiles is computed to demonstrate the variability in the run-length distribution. The \( QDRL \) can be presented as:

\[
QDRL = \frac{Q3 - Q1}{2},
\]

where \( Q1 \) and \( Q3 \) are the 25th and 75th percentiles of the run-length distribution, respectively. Table 4 shows that the run-length distribution of the VSS MEWMA chart has a smaller variability than that of the standard MEWMA chart and the synthetic \( T^2 \) chart when the shifts are small \( (\delta_{\text{opt}} \leq 1.00) \) for both zero-state and steady-state cases since the \( QDRLs \) of the VSS MEWMA chart are smaller than that of the standard MEWMA chart and the synthetic \( T^2 \) chart. For example, at \( \delta_{\text{opt}} = 0.25 \) for \( p = 2 \), the zero-state \( QDRLs \) for the VSS MEWMA chart, the standard MEWMA chart and the synthetic \( T^2 \) chart are 8.5, 13.5 and 123.5, respectively. However, the difference in the \( QDRL \) is not significant between the control charts at the larger shifts \( (\delta_{\text{opt}} \geq 1.50) \). The
results for the VSS MEWMA chart and the standard MEWMA chart are verified via Monte Carlo simulation.

8. Illustrative Example

An example is presented in this section to illustrate the implementation of a VSS MEWMA chart based on the steady-state MRL. The implementation of the corresponding standard MEWMA chart is also discussed for the sake of comparison. The monitoring process is the operation of an aluminium smelter with the known in-control process mean vector is $\tilde{\mu}_0 = (-0.1083, 0.0162, 0.0573, -0.0085, 1.0893)^T$ and the known process covariance matrix is

$$
\Sigma = \begin{pmatrix}
0.1727 & 0.0628 & -0.0276 & -0.0127 & -0.0033 \\
0.0628 & 0.3307 & -0.3019 & -0.0167 & 0.0332 \\
-0.0276 & -0.3019 & 0.5313 & -0.0602 & -0.0007 \\
-0.0127 & -0.0167 & -0.0602 & 0.1897 & -0.0240 \\
-0.0033 & 0.0332 & -0.0007 & -0.0240 & 0.0336
\end{pmatrix},
$$


The first 200 observations are generated from a multivariate normal distribution with the given $\tilde{\mu}_0$ and $\Sigma$. After that, the remaining observations are generated using the distribution with the same $\Sigma$ but the process starts to shift with the process mean vector, $\tilde{\mu}_1 = (-0.1865, 0.0183, 0.0928, -0.0454, 1.0878)^T$. These observations are plotted on the VSS MEWMA chart and the standard MEWMA chart in Figures 2 and 3, respectively. The generated data for both charts can be accessed at https://www.researchgate.net/publication/310597075_Supplementary_Materials_for_VSS_MEWMA?ev=prf_pub (Tables S1 and S2 in supplementary material).
It is assumed that $\delta_{\text{opt}} = 0.25$ is the most distinct variation in the process mean vector to be detected quickly during the process monitoring. The VSS MEWMA chart and the standard MEWMA chart are optimized at $\delta_{\text{opt}} = 0.25$ with $MRL_0 = 350$, $p = 5$ and $E(n) = 5$. The optimal charting parameters for the VSS MEWMA chart are $(r, n_1, n_2, H, w) = (0.10, 2, 18, 17.153, 7.228)$ and the optimal charting parameters for the standard MEWMA chart are $(r, H) = (0.05, 15.827)$ (see Table 2).

The concept of the VSS MEWMA chart is that the next sample would be the small sample of size $n_1 = 2$ if the current plotted chart statistic falls inside the safety region $(T^2_i \leq w)$. On the other hand, the next sample would be the large sample of size $n_2 = 18$ if the current plotted chart statistic falls inside the warning region $(w < T^2_i \leq H)$. The sampling scheme for this VSS MEWMA chart is defined by the following function:

$$
n = \begin{cases} 
2 & \text{if } T^2_i \leq 7.228 \\
18 & \text{if } 7.228 < T^2_i \leq 17.153
\end{cases}.
$$

In Figure 2, the symbols ◆ and ▲ represent the small sample of size $n_1$ and the large sample of size $n_2$, respectively. The VSS MEWMA chart is implemented as follows: The sample mean vector at the first sampling point ($t = 1$) obtained using $n_2 = 18$ is computed as $\bar{X}_1 = (-0.0015, 0.0715, 0.0465, 0.0342, 1.0385)^T$ using Equation (1) and the corresponding standardized sample mean vector is calculated as $\tilde{Z}_1 = (1.0907, 0.4080, -0.0631, 0.4155, -1.1761)^T$ using Equation (2). The in-control process standard deviation vector is obtained as the square root of the elements of $\tilde{\Sigma}$ on the main diagonal and is calculated as $\tilde{\sigma}_0 = (\sqrt{0.1727}, \sqrt{0.3307}, \sqrt{0.5313}, \sqrt{0.1897}, \ldots)$. 
\[ \sqrt{0.0336} = (0.4156, 0.5750, 0.7289, 0.4356, 0.1834)^T. \]

Then, the MEWMA vector is calculated as \( \hat{W}_1 = (0.1091, 0.0408, -0.0063, 0.0415, -0.1176)^T \) using Equation (3) and the corresponding plotted chart statistic is calculated as \( T_{1}^2 = 0.63 \) using Equation (4). Since this chart statistic falls inside the safety region, then the small sample of size \( n_1 = 2 \) will be used for the next sampling point. This process is continued until the 86th sampling point \( (t = 86) \) with the plotted chart statistic calculated as \( T_{86}^2 = 8.23 \). This sample falls inside the warning region, then the large sample of size \( n_2 = 18 \) will be used for the next sampling point \( (t = 87) \). This process then is continued until the 231st sampling point \( (t = 231) \), where this VSS MEWMA chart detects the out-of-control signal at this sampling point since \( (T_{231}^2 = 17.73) > H \), where \( H = 17.153 \).

The standard MEWMA chart is implemented as follows (see Figure 3): At the 1st sampling point, the sample mean vector with a fixed sample of size \( n_0 = 5 \) is computed as \( \bar{X}_1 = (-0.0209, -0.0899, -0.3193, 0.3410, 0.9827)^T \) using Equation (1) and the corresponding standardized sample mean vector is calculated as \( \tilde{Z}_1 = (0.4702, -0.4126, -1.1553, 1.7941, -1.2997)^T \) using Equation (2). Then, the MEWMA vector at this sampling point is calculated as \( \tilde{W}_1 = (0.0235, -0.0206, -0.0578, 0.0897, -0.0650)^T \) using Equation (3) and the corresponding plotted chart statistic is calculated as \( T_{1}^2 = 0.65 \) using Equation (4). This process is continued until the out-of-control signal is detected at the 247th sampling point \( (t = 247) \) since \( (T_{247}^2 = 16.74) > H \), where \( H = 15.827 \).

The comparison between the standard MEWMA chart and the VSS MEWMA chart highlights that the latter is quicker in detecting the out-of-control signal compared to the former. In other words, the VSS MEWMA chart detects the out-of-control signal
at a much earlier time than the standard MEWMA chart. This result clearly
demonstrates the superiority of the VSS MEWMA chart over the standard MEWMA
chart in detecting shifts in the process mean vector. The VSS MEWMA chart has a
steady-state $MRL_1$ of 21 in detecting $\delta_{opt} = 0.25$. In comparison, the corresponding
standard MEWMA chart has a steady-state $MRL_1$ of 31 (see Table 3). The $MRL_1$ value
of the standard MEWMA chart is about $(31 - 21)/31 \times 100 = 32\%$ more than that of the
VSS MEWMA chart.

9. Conclusions

This paper presents the optimal statistical design of the VSS MEWMA chart based on
the $MRL$. The shape of the run-length probability distribution for the VSS MEWMA
chart changes with the shift in the process mean vector, ranging from being highly right
skewed when the process is in control to being almost symmetric when the shift is large.
Thus, the $MRL$ is proposed as a performance measure for the VSS MEWMA chart,
instead of the $ARL$ for ease of interpretation. The percentage points of the run-length for
the different magnitude of shifts in the process mean vector are also included for a
better understanding of the VSS MEWMA chart.

From the numerical comparison, it is noticeable that the $MRL_1$ and the $QDRL$ of
the VSS MEWMA chart are smaller than that of the standard MEWMA chart and the
synthetic $T^2$ chart. This means that the VSS MEWMA chart performs better than the
standard MEWMA chart and the synthetic $T^2$ chart for detecting shifts in the process
mean vector.

References

adaptive exponentially weighted moving average control chart with estimated


Teoh, W.L., Khoo, M.B.C., & Teh, S.Y. (2013). Optimal designs of the median run length based double sampling $\bar{X}$ chart for minimizing the average sample size. *PLoS ONE, 8*(7), 1–11. doi: 10.1371/journal.pone.0068580


Table 1. Percentage points of the run-length for the steady-state VSS MEWMA chart ($p = 2$, $E(n) = 5$ and $ARL_0 \approx 500$).

<table>
<thead>
<tr>
<th>Optimal charting parameters</th>
<th>$\delta$</th>
<th>$ARL$</th>
<th>Percentage points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>$\delta_{opt} = 0.50$</td>
<td>0.00</td>
<td>498.33</td>
<td>5</td>
</tr>
<tr>
<td>$\varepsilon(r, n_1, n_2, H, w) = (0.43, 1, 21, 12.228, 3.197)$</td>
<td>0.25</td>
<td>32.61</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>7.15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>3.44</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.50</td>
<td>2.59</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.99</td>
<td>1</td>
</tr>
<tr>
<td>$\delta_{opt} = 1.00$</td>
<td>0.00</td>
<td>499.20</td>
<td>6</td>
</tr>
<tr>
<td>$\varepsilon(r, n_1, n_2, H, w) = (0.61, 1, 10, 12.343, 1.613)$</td>
<td>0.25</td>
<td>36.10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>11.28</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>2.73</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.50</td>
<td>1.85</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>1.62</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2. Zero-state and steady-state optimal charting parameters for the VSS MEWMA chart, the standard MEWMA chart and the synthetic $T^2$ chart ($E(n) = 5$ and $MRL_0 = 350$).

| $\delta_{opt}$ | $p$ | Zero-state | | | Steady-state | |
|----------------|-----|------------|---|------------|---|
|                |     | VSS MEWMA  | standard MEWMA | synthetic $T^2$ | VSS MEWMA | standard MEWMA | synthetic $T^2$ |
|                |     | ($r, n_1, n_2, H, w$) | ($r, H$) | ($L, CL$) | ($r, n_1, n_2, H, w$) | ($r, H$) | ($L, CL$) |
| 0.25           | 2   | (0.19, 3, 20, 11.615, 4.150) | (0.11, 10.929) | (10.4541) | (0.10, 4, 12, 10.790, 1.360) | (0.10, 10.790) | (4.76203) |
|                | 3   | (0.17, 2, 20, 13.855, 4.96) | (0.05, 11.903) | (86, 12.961) | (0.10, 4, 14, 13.124, 2.281) | (0.05, 11.903) | (3.93007) |
|                | 5   | (0.11, 3, 16, 17.310, 7.780) | (0.05, 15.827) | (91, 16.9552) | (0.10, 2, 18, 17.153, 7.228) | (0.05, 15.827) | (3.127782) |
| 0.50           | 2   | (0.35, 3, 15, 12.131, 3.601) | (0.16, 11.419) | (11, 8.629) | (0.34, 1, 12, 11.125, 1.975) | (0.19, 11.614) | (6.80241) |
|                | 3   | (0.30, 4, 13, 14.401, 5.869) | (0.18, 13.920) | (16, 11.1219) | (0.35, 2, 16, 14.510, 4.450) | (0.19, 13.979) | (5.98575) |
|                | 5   | (0.30, 3, 14, 18.499, 7.426) | (0.17, 17.928) | (24, 15.3300) | (0.31, 1, 17, 18.525, 6.570) | (0.15, 17.766) | (6.13657) |
| 1.00           | 2   | (0.50, 3, 6, 12.305, 0.776) | (0.50, 12.305) | (2, 6.9318) | (0.62, 1, 9, 12.365, 1.380) | (0.43, 12.245) | (1.62456) |
|                | 3   | (0.47, 3, 6, 14.655, 1.530) | (0.43, 14.615) | (2, 8.8577) | (0.70, 1, 12, 14.749, 3.267) | (0.40, 14.580) | (3.93007) |
|                | 5   | (0.48, 4, 7, 18.760, 5.75) | (0.40, 18.680) | (3, 12.7782) | (0.48, 1, 6, 18.760, 2.360) | (0.30, 18.499) | (3.127782) |
| 1.50           | 2   | (0.62, 2, 6, 12.365, 0.520) | (0.30, 12.030) | (1, 6.2456) | (0.98, 1, 6, 12.403, 0.476) | (0.60, 12.355) | (1.62456) |
|                | 3   | (0.65, 2, 6, 14.738, 1.178) | (0.60, 14.723) | (1, 8.0978) | (0.58, 1, 6, 14.720, 1.017) | (0.59, 14.720) | (1.80978) |
|                | 5   | (0.65, 2, 6, 18.834, 2.607) | (0.63, 18.829) | (1, 11.3981) | (0.60, 1, 6, 18.820, 2.345) | (0.62, 18.826) | (1.13981) |
| 2.00           | 2   | (0.90, 3, 6, 12.402, 0.781) | (0.70, 12.385) | (1, 6.2456) | (0.65, 1, 6, 12.375, 0.455) | (0.70, 12.385) | (1.62456) |
|                | 3   | (0.80, 4, 6, 14.762, 2.361) | (0.70, 14.749) | (1, 8.0978) | (0.70, 1, 6, 14.749, 1.020) | (0.70, 14.749) | (1.80978) |
|                | 5   | (0.89, 4, 6, 18.862, 4.294) | (0.80, 18.857) | (1, 11.3981) | (0.74, 1, 6, 18.853, 2.349) | (0.70, 18.845) | (1.13981) |
| 2.50           | 2   | (0.87, 2, 6, 12.400, 0.554) | (0.65, 12.370) | (1, 6.2456) | (0.60, 1, 6, 12.355, 0.411) | (0.60, 12.355) | (1.62456) |
|                | 3   | (0.74, 3, 6, 14.755, 1.543) | (0.60, 14.723) | (1, 8.0978) | (0.60, 1, 6, 14.723, 1.018) | (0.60, 14.723) | (1.80978) |
|                | 5   | (0.80, 3, 6, 18.857, 3.161) | (0.65, 18.834) | (1, 11.3981) | (0.63, 1, 6, 18.833, 2.346) | (0.70, 18.845) | (1.13981) |
Table 3. Zero-state and steady-state $MRL_{1}$s of the VSS MEWMA chart, standard MEWMA chart and the synthetic $T^2$ chart ($E(n) = 5$ and $MRL_{0} = 350$).

<table>
<thead>
<tr>
<th>$\delta_{opt}$</th>
<th>$p$</th>
<th>Zero-state</th>
<th></th>
<th>Steady-state</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>VSS MEWMA</td>
<td></td>
<td>standard MEWMA</td>
<td></td>
<td>synthetic $T^2$</td>
<td></td>
<td>VSS MEWMA</td>
<td></td>
<td>standard MEWMA</td>
<td></td>
<td>synthetic $T^2$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Markov chain approach</td>
<td>Monte Carlo simulation</td>
<td>Markov chain approach</td>
<td>Monte Carlo simulation</td>
<td></td>
<td>Markov chain approach</td>
<td>Monte Carlo simulation</td>
<td>Markov chain approach</td>
<td>Monte Carlo simulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>2</td>
<td>17</td>
<td>17</td>
<td>21</td>
<td>26</td>
<td>67</td>
<td>15</td>
<td>15</td>
<td>25</td>
<td>25</td>
<td>157</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>20</td>
<td>20</td>
<td>29</td>
<td>29</td>
<td>86</td>
<td>15</td>
<td>15</td>
<td>28</td>
<td>28</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>24</td>
<td>24</td>
<td>33</td>
<td>34</td>
<td>151</td>
<td>21</td>
<td>21</td>
<td>31</td>
<td>32</td>
<td>223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>12</td>
<td>12</td>
<td>24</td>
<td>7</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Zero-state and steady-state QDRLs of the VSS MEWMA chart, the standard MEWMA chart and the synthetic $T^2$ chart ($E(n) = 5$ and $MRL_0 = 350$).

<table>
<thead>
<tr>
<th>$\delta_{opt}$</th>
<th>$p$</th>
<th>VSS MEWMA</th>
<th>standard MEWMA</th>
<th>synthetic $T^2$</th>
<th>VSS MEWMA</th>
<th>standard MEWMA</th>
<th>synthetic $T^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Markov chain approach</td>
<td>Monte Carlo simulation</td>
<td>Markov chain approach</td>
<td>Monte Carlo simulation</td>
<td>Markov chain approach</td>
<td>Monte Carlo simulation</td>
</tr>
<tr>
<td>0.25</td>
<td>2</td>
<td>8.5</td>
<td>9.0</td>
<td>13.5</td>
<td>13.5</td>
<td>123.5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.5</td>
<td>11.0</td>
<td>10.5</td>
<td>10.0</td>
<td>157.5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>9.5</td>
<td>10.0</td>
<td>12.0</td>
<td>12.0</td>
<td>202.0</td>
<td>10.0</td>
</tr>
<tr>
<td>0.50</td>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>20.0</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>3.5</td>
<td>28.0</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3.0</td>
<td>3.0</td>
<td>4.5</td>
<td>4.5</td>
<td>43.5</td>
<td>3.0</td>
</tr>
<tr>
<td>1.00</td>
<td>2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1.50</td>
<td>2</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2.00</td>
<td>2</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.5</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2.50</td>
<td>2</td>
<td>0.5</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Figure 1. Plots of the run-length probability distribution for the zero-state VSS MEWMA chart \((E(n) = 5, MRL_0 = 350, p = 3 \text{ and } \delta_{opt} = 0.50)\).
Figure 2. The VSS MEWMA chart for the illustrative example.

Figure 3. The standard MEWMA chart for the illustrative example.