Convergent (De)Hydrogenative Pathways via a Rhodium α-Hydroxylalkyl Complex

Sung, Simon; Boon, Jie Kang; Lee, Johnathan J. C.; Rajabi, Nasir Ahmad; Macgregor, Stuart Alan; Krämer, Tobias; Young, Rowan D.

Published in:
Organometallics

DOI:
10.1021/acs.organomet.7b00158

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in Heriot-Watt University Research Portal

Citation for published version (APA):
Convergent (de)hydrogenative pathways via a rhodium α-hydroxyl-alkyl complex

Simon Sung, Jie Kang Boon, Johnathan J. C. Lee, Nasir A. Rajabi, Stuart A. Macgregor, Tobias Krämer* and Rowan D. Young*

Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

ABSTRACT: We report the convergent reaction pathways between [RhH(PPh₃)₄] and POP ketone (1) and alcohol (2) ligands that terminate in the formation of an α-hydroxylalkyl rhodium(I) complex (3), representing two halves of a formal reduction/oxidation pathway between 1 and 2. In the case of hydride transfer to 1, the formation of the α-hydroxylalkyl rhodium(I) complex (3) proceeds via a rare hydrido[η²-carbonyl] complex (4). C-H activation in 2 at the proligand’s central methine position, rather than O-H activation of the hydroxy motif, followed by loss of dihydrogen also generates the α-hydroxylalkyl rhodium(I) complex (3). The validity of the postulated reaction pathways is probed by DFT calculations. The observed reactivity supports α-hydroxylalkyl complexes as competent intermediates in ketone hydrogenation catalyzed by rhodium hydrides, and suggest that ligands 1 and 2 may be ‘non-innocent’ co-ligands in reported hydrogenation catalyst systems in which they are utilised.

Introduction:

The transfer of hydrogen from metals to ketones and, through reversibility, from alcohols to metals is of fundamental importance to (de)hydrogenation reactions mediated by metal catalysts. Such reactions involve metal hydride intermediates and can proceed via two distinct pathways involving hydride transfer to either the electrophilic carbon or the nucleophilic oxygen of the carbonyl group (Scheme 1). Thus, basic metal monohydrides tend to form metal alkoxide intermediates with ketones (Scheme 1, route A); H₂ addition then gives the alcohol product and regenerates the metal hydride. In contrast, hydrogenation of aldehydes and ketones with acidic metal hydrides has been observed to proceed via α-hydroxylalkyl intermediates in acidic media (Scheme 1, route B).

The mechanism by which a metal hydride is transferred to a bound ketone or aldehyde for cases operating via alkoxide intermediates is well studied spectroscopically in situ and computationally (Scheme 1, A). However, the transfer of a metal hydride to generate an α-hydroxylalkyl intermediate has less precedent despite their inference in catalytic hydrogenation¹⁻² and hydroformylation³ reactions.

Indeed, structurally characterized examples mapping hydride migration to either electrophilic or nucleophilic positions of a bound organocarbonyl are unknown. Intermediates involved in such transitions are of great importance to a wide range of carbonyl reductions but until this study have only been interrogated in silico or observed spectroscopically in situ.⁴⁻⁵

α-Hydroxylalkyl complexes are typically unstable with respect to β-hydrogen elimination, and so examples of isolated complexes are rare. In pioneering work, Gladysz (and later Garralda) demonstrated the formation of α-hydroxylalkyl complexes in constrained environments based on hydride migration to α-(diphenylphosphino)benzaldehyde ligands.⁶⁻⁷

Scheme 1. Ketone hydrogenation proceeding via an alkoxide intermediate (route A) or an α-hydroxylalkyl intermediate (route B).

If α-hydroxylalkyl complexes lie on the reaction pathway of ketone hydrogenation, then they should also be accessible through the C-H activation of an alcohol. Such selective activation of C-H bonds in the presence of O-H bonds is of great interest regarding simple alcohol functionalization, with the single-step C-H activation and functionalization of alcohol geminal C-H positions remaining a contemporary chemical challenge. However, such selective C-H activation is unknown, this approach being non-trivial due to the presence of several alternative reaction outcomes.

Herein we describe the controlled hydrogen transfer to and from the ketone and alcohol moieties of the diphosphine POP ligands 1⁹ and 2¹⁰ mediated by hydridotetrakis(tri-phenylphosphine)rhodium(I), [RhH(PPh₃)₄]. The results demonstrate a convergent pathway to a common α-hydroxylalkyl complex that is accessible from both ketone and alcohol precursors using a common ligand platform. Within this we
demonstrate the formation of an α-hydroxylalkyl species directly from a rare isolated metal-hydride/η^2-ketone precursor, as well as the geminal C-H activation of an alcohol. DFT calculations are utilized to probe the mechanistic details of these processes which are shown to map out route B in Scheme 1 in full. The results also highlight the potential non-innocence of these POP ligands, which are commonly used in asymmetric hydrogenation catalysis.

Results and discussion:

Addition of POP ketone 1 to [RhH(PPh$_3)_4$] in benzene-d_6 resulted in the loss of 3 equiv. of PPh$_3$ and the formation of the α-hydroxyl complex 3 over 12 h. Monitoring the reaction at shorter time intervals revealed that 1 and [RhH(PPh$_3)_4$] initially formed hydrido(η^2-carbonyl) 4 (within minutes) that was converted into 3 over a matter of hours at room temperature (Scheme 2). Formation of 4 was evident by the presence of a rhodium-bound carbon (δ^C 137.8, $^1J_{RhC}$ = 9.2 Hz). The chemical shift and rhodium-carbon coupling constant deviate notably from that of the proligand carbonyl (δ^C 197.3), and imply a bonding mode lying between the extreme cases of η^2-carbonyl and metallaepoxide (defined by the Dewar-Chatt-Duncanson model) and exemplified by recently reported analogues [1-Ni(PPh$_3$)$_4$]11 and [L$_1$IrX]12 (L$_1$ = κ^3-P,$(\eta^2$-C,O),P'-bis(5-(diisopropylphosphino)3,4-benzo[b][thiophenyl])methanone, X = Cl or OH). A degree of π-retrodonation to the carbonyl is supported by relatively small one-bond rhodium-phosphorus coupling constants ($^1J_{RhP}$ = 130.6, 108.9 Hz) in 4 indicating an electron poor rhodium centre. FTIR spectroscopy could not provide...
support for carbonyl coordination with failure to identify a specific C=O stretching band. However, a strong Rh-H stretch was observed at 1969 cm⁻¹ (cf. calc. value of 1993 cm⁻¹, see ESI).

Crystals of compound 4 were grown upon layering a toluene solution of 4 with hexane at low temperature (253 K). The molecular structure of 4 (Figure 1) supports the coordination of the carbonyl to rhodium, observed spectroscopically in solution. The geometry around rhodium is best described as pseudo trigonal bipyramidal, with numerous examples of analogous pentacoordinate rhodium complexes subtended by η²-carbonyl ligands exhibiting such geometry. Significant elongation of the C=O bond (1.339(8) Å) from the free ligand 1 (1.213(3) Å) is observed indicating a significant degree of π-retrodonation. However, the coordination is consistent with a bound carbonyl, falling within the range of previously reported rhodium η²-carbonyl complexes. Notably, the molecular structure of 4 reveals the hydrido ligand to be trans to the oxygen in the coordinated carbonyl, representing a barrier for hydride to carbonyl migration.

In solution, the α-hydroxylalkyl complex 3 is generated from 4 upon the transfer of hydrogen from rhodium to oxygen. The 1H NMR spectrum of compound 3 exhibits a hydrido resonance at 3.15 ppm (JHH 3.5 Hz). Selective decoupling of a phosphorus signal at δP 37.5 resolves the signal at δH 3.15 into a singlet, indicative of long range 1H-31P coupling. The addition of D₂O to a solution of 3 resulted in the disappearance of this signal, while other NMR signals remained unaffected. The carbon-rhodium bond in 3 is characterized by a doublet of doublet of triplets signal in the 13C NMR spectrum at δC 106.1 (JHH = 25.2 Hz), with a typical JHH for a rhodium α-hydroxylalkyl moiety.

An X-ray diffraction study confirms 3 to be an α-hydroxylalkyl complex (Figure 2). In agreement with solution data, 3 assumes a distorted square-planar geometry, with P1–Rh1–P2 and P1–Rh1–P3 angles deviating greatly from linear (132.45(13)° and 166.44(4)°, respectively). The significantly reduced average Rh–P bond distances in 3 as compared to 4 point to a more electron rich Rh center in the former. The formation of 3 from 4 was monitored with 1H and 31P NMR spectroscopy across a range of temperatures and in the presence of varying quantities of added PPh₃ (see ESI). Although it was apparent that free PPh₃ accelerated the reaction, the exact reaction order relative to [PPh₃] could not be precisely determined, but was found to be between 0 and 1. This may be indicative of a non-trivial mechanism. Thus, although accurate activation parameters from these collected data could not be derived, they are discussed in ESI.

Compound 3 could also be generated by the addition of the alcohol proligand 2 to [RhH(PPh₃)₄] in benzene-d₆ with concomitant loss of H₂ (Scheme 2). The formation of 3 from 2 and [RhH(PPh₃)₄] completes the (de)hydrogenation reaction pathway between 1 and 2 mediated by [RhH(PPh₃)₄]. Monitoring the production of 3 from the combination of either 1 or 2 with [RhH(PPh₃)₄], reveals that once a maximum concentration of 3 has been achieved, very small quantities of 4 are still observed. In the presence of > 1 equiv. of PPh₃, this equilibrium is established in a matter of days, but takes weeks to establish in the absence of PPh₃. The ratio of 3:4 after equilibrium is established is ca. 20:1 (see ESI), suggesting a ΔG of -1.8 kcal mol⁻¹.

En route to compound 3 from 2 and [RhH(PPh₃)₄], compound 5 is observed. Although 5 is transient at room temperature, at 280 K it can be spectroscopically characterized and is distinguished by the appearance of new signals in the 1H NMR spectrum at δH 9.87 (br s) and 1.39 (d, JHH = 3.3 Hz) that correlate to one another in a COSY 2D NMR experiment. A HSQC experiment provided no correlation for the signal at δH 1.39 to any 13C atoms, but correlated the signal at δH 9.87 with a signal at δC 69.3. These data suggest the identities of the signals at δH 9.87 and 1.39 to be the methyl CH and OH signals of bound 2 respectively. In the upfield region of the 1H NMR spectrum of 5, a broad doublet is observed at δH -8.58 (JHH = 90 Hz), 0.52 ppm upfield of the hydride signal of [RhH(PPh₃)₄] (δH -8.06, JHH = 12.7 Hz), suggesting fluxional behavior.

| Table 1. Selected NMR spectroscopic data for compounds 3-7. |
|-------------|----------------|----------------|----------------|----------------|
| Compound | Jc (Hz) | JHH (Hz) | JHac (Hz) | JHac (Hz) |
| 3 | 178 | 28.3 |
| 4 | 130 | 10.1 |
| 5 | N/A | N/A |
| 6 | 170 | 14.9 |
| 7 | 120 | 24.0 |

* coupling to cis phosphorus nuclei not observed. ² 280 K. ³ 233 K.

3¹P NMR spectrum of 5 further revealed the dynamic behavior
of 5, with two broad doublets present at $\delta_H 34.3$ ($J_{RhP} = 170$ Hz) and 31.0 ($J_{RhP} = 131$ Hz) with a combined integral of three phosphorus nuclei relative to free PPh$_3$ (integration: 3P).

Analysis by 31P NMR spectroscopy of a solution of 5 and liberated PPh$_3$ generated from [RhH(PPh$_3$)$_3$] and 2 in toluene-d_8 at 223 K revealed the presence of at least three separate phosphorus environments on rhodium (integration: 4P) with complex coupling patterns in addition to free PPh$_3$ (integration: 2P). At this temperature, the 1H spectrum of 5 revealed that fluxional processes were still occurring on the 1H NMR time-scale. The hydridic signal remained broad, but had shifted upfield to -12.22 ppm and the $^2J_{PH}$ for this signal had increased to 110 Hz. Concurrently, the methine CH signal in bound 2 had shifted upfield from $\delta_H 9.87$ to 9.20. Overall the NMR data imply 5 exists in equilibrium with its PPh$_3$ adduct, 5•PPh$_3$, and that the adduct may be preferred at lower temperatures.

A downfield shift for C–H bonds in the vicinity of d8 metals has been observed in bisphosphino methylene ligands related to 2 (that also undergo C–H activation) and has previously been assigned as an anagostic interaction. Assignment based purely on NMR spectroscopic evidence has recently been reported to be misleading, however, we cautiously assign the C–H-Rh interaction as anagostic with supporting computational analysis (see below).

Further insight into the C–H activation of POP alcohol ligand 2 was obtained from its reaction with [RhCl(COD)PPh$_3$] that led to the formation of the hydridochloride 7 alongside free 1,5-cyclooctadiene (Scheme 3). 1H NMR data support compound 7 to be an α-hydroxylalkyl complex, with a hydroxyl signal located at $\delta_H 7.57$. This signal appears as a doublet with long-range coupling to phosphorus (d, $^4J_{PH} = 7.5$ Hz), selective 3P decoupling at $\delta_P 23.7$ collapses this signal to a singlet. The addition of a small quantity of D$_2$O also resulted in the disappearance of the signal while other NMR data remain unaffected. The 1H NMR spectrum also reveals the appearance of an upfield hydride shift at $\delta_H -16.22$ (dd, $^1J_{RhH} = 22.1$ Hz (d), $^2J_{PH} = 14.3$ Hz (t), $^3J_{PH} = 9.2$ Hz (d)).

![Scheme 4](https://example.com/scheme4.png)

Scheme 4. Hydrogenation of 3 generates cis dihydride 6.

A molecular structure determination of 7 (Figure 3) reveals its geometry, with the PCP ligand adopting a mer configuration after C–H oxidative addition to the rhodium centre. It is also observed that the hydroxyl hydrogen (H11), located in a Fourier difference map, is hydrogen bonded to the proximal chloride ligand (Cl1–H11$_{dist} = 2.273$ Å). Induced elimination of HCl from 7 by treatment with an equivalent of Li[N(SiMe$_3$)$_2$] results in the formation of compound 4, which then transforms to 3. This stands in contrast to the reaction between 2 and [RhH(PPh$_3$)$_3$] that generates 3 without any observation of 4, signifying that H$_2$ loss occurs via a cis-dihydride intermediate, rather than through elimination of H$_2$ from a trans-dihydride analogue of 7 (i.e. a ‘trans-Rh11(H)$_2$(COH)P$_2$’ fragment).

To investigate the possible identity of a cis dihydride intermediate 6, dihydrogen (4 atm) was introduced into an NMR sample tube containing 3 in toluene-d_8 solution. At room temperature, 1H NMR spectroscopy reveals the formation of a broad signal at $\delta_H -2.8$ (integration: 2H). In addition, the signal for free H$_2$ (expected at $\delta_H 4.50$) is not observed. The hydroxyl signal originally at $\delta_H 3.15$ is broadened and observed to shift downfield to $\delta_H 3.65$ (integration: 1H). The 31P NMR spectrum of this sample reveals resonances at $\delta_P 45.6$ (dd, 2H, $^1J_{RhP} = 125.1$ Hz, $^2J_{PP} = 20.2$ Hz) and 41.7 (dt, 1H, $^1J_{RhP} = 93.2$ Hz, $^2J_{PP} = 20.2$ Hz) displaying a similar chemical shift to 3, but reduced coupling constants. As the temperature is lowered to 233 K, the hydridic signal resolves into a broad doublet at $\delta_H -6.8$ ($^2J_{PH} = 140$ Hz), indicative of a single trans phosphorus-hydride environment. T_1 measurements at various temperatures excluded the identity of 6 as a dihydrogen complex (see ESI). At this temperature, the hydroxyl signal is observed at $\delta_H 4.25$ as a doublet ($^2J_{PH} = 4.4$ Hz) and free hydrogen is observed as a broad signal at $\delta_H 4.5$ that sharpens at lower temperatures. A 1H31P NMR spectrum with a decoupling window centred at $\delta_H 40.0$ collapses both the hydridic and hydroxyl signals into singlets.

![Scheme 5](https://example.com/scheme5.png)

Scheme 5. Isotopomers 2a, 2b react with [RhH(PPh$_3$)$_3$] to generate isotopologues 3a and 7b respectively.
The 31P NMR spectrum of the sample at 233 K shows a broad doublet at δ_P 45.6 (J_{RP} = 84.5 Hz) and a doublet of triplets at δ_P 41.7 ($J_{RPC} = 84.5$ Hz, $J_{RPP} = 14.9$ Hz). A HMBC experiment at 233 K (optimized for $J_{CH} = 10$ Hz) exhibits a correlation between the hydroxyl proton at δ_H 4.25 and a signal at δ_C 95.8. A 1D 13C NMR experiment revealed this signal to be a doublet of doublets ($J_{RC} = 95.2$ Hz, $J_{RCC} = 28.6$ Hz). After warming and degassing of the sample, compound 3 was quantitatively reformed. These data are indicative of the formation of a Rh(III) centre at low temperature in dynamic equilibrium with 3 and molecular hydrogen. Given these spectroscopic data, 6 is assigned as a cis dihydride featuring a facially coordinated PCP ligand (Scheme 4). Selected NMR spectroscopic data for compound 3-7 are shown in Table 1.

Confirmation that the C–H methine of 2 is activated in reactions with rhodium (as opposed to O–H activation followed by rearrangement) is confirmed by employing the isotopeologues 2a and 2b (Scheme 5). C–H activation is expected on a dehydrogenation pathway that involves an α-hydroxylalkyl intermediate. When [RhH(PPh$_3$)$_3$] is reacted with isotopeologue 2a, 3a is generated (Scheme 5), which is spectroscopically identical to 3, except that the HCOH signal at δ_H 3.15 was diminished and a signal at 3.25 ppm was located in the 1H NMR spectrum of 3a, signifying the deuteration of the hydroxyl position. Conversely, when 2b is reacted with [RhH(PPh$_3$)$_3$], compound 3 is produced with loss of HD. Addition of 2b to [RhCl(COD)PPh$_3$] resulted in the production of 7b, identical to 7 (by NMR spectroscopy), with the exception of substitution of the hydride ligand with deuterium, as evident by the absence of a hydridic signal in the 1H NMR spectrum.

To elucidate the mechanistic details of the convergent pathways that convert both the ketone (4) and alcohol (5) precursors into the α-hydroxylalkyl product 3, a computational analysis of the associated free energy surfaces was carried out using DFT calculations at the B97-D3/BS2/BP86/BS1 level of theory corrected for benzene solvent (see ESI for Computational Details). The most accessible computed pathways at 298 K for both processes are detailed in Figure 4. The optimized structure of 4 agrees well with the crystallographic data. In particular the C=O (calc.: 1.35 Å, exp.: 1.339(8) Å), Rh–C (calc.: 2.16 Å, exp.: 2.118(7) Å) and Rh–O (calc.: 2.22 Å, exp.: 2.187(5) Å) distances are well reproduced, along with the trans–P–Rh–P angle of the POP ligand (calc.: 154.0°, exp.: 153.19(8)°).

Analysis of the Natural Bond Orbitals (NBOs) in 4 shows that C=O coordination to the metal center is governed by π$_{CO}$ → Rh donation, reinforced by substantial π*$_{CO}$ → Rh back-donation (see Fig S65). The elongation of the C=O bond arises due to notable population of the π*$_{CO}$ orbital (0.79 e$^-$) and de-population of the π$_{CO}$ orbital (1.82 e$^-$). The partial reduction of the double bond character of the C=O bond is also reflected in the Wiberg bond index (1.18), lying in between those for the C=O double bond in 1 (1.68) and the C–O(H) single bond in 2 (0.91). In contrast, the indices for the Rh–C (0.39) and Rh–O (0.24) interactions are smaller compared to those found for the Rh–C (0.47) and Rh–H (0.56) bonds in 3 and 4, respectively.
which serve as a reference point. Thus in accordance with the experimental findings the \{RhCO\} unit is best described as a Rh-bound carbonyl.

The optimized structure of 3 reproduces the distorted square-planar geometry around Rh seen experimentally: trans-P-Rh-P (calc.: 132.9°, exp.: 132.45(13); trans-C–Rh–P (calc.: 164.1°, exp.: 166.4(4)). The Rh–C distance is reduced from 2.16 Å in 4 to 2.13 Å in 3 and this is paralleled by an increase in the calculated Rh–C isotropic spin–spin coupling constant (4: \(J_{\text{RCC}} = -9.1\) Hz; 3: \(J_{\text{RCC}} = -17.4\) Hz).

The computed mechanism for the formation of 3 from 4 starts with an initial isomerization of 4, with a calculated barrier of 17.7 kcal mol\(^{-1}\) proceeding via TS(4-Int1). The POP ligand undergoes isomerization from a mer–\(\kappa^1\)-P,(CO),P to a fac–\(\kappa^1\)-P,(CO),P binding mode (\(\Delta G^{\text{int}}\)–Rh–P 109.1°). Concomitantly, the hydride moves from its equatorial coordination site trans to oxygen into the opening axial position. The distortion of the ligand in TS(4-Int1) also causes the C=O unit to move away from Rh (Rh–O: 2.52 Å; Rh–C: 2.38 Å), thereby decreasing \(\pi\)-back-bonding from the metal center and restoring more double-bond character (C=O: 1.28 Å).

The cis arrangement of the \{Rh(C=O)(H)\} moiety in Int1 (\(G^\ddagger = +0.5\) kcal mol\(^{-1}\)) allows for insertion of the ketone into the Rh–H bond through TS(Int1–3) at 21.1 kcal mol\(^{-1}\) to form the \(\alpha\)-hydroxyalkyl in 3. By inspection TS(Int1–3) also defines the overall energetic span\(^{17}\) (\(\Delta G(1) = +21.1\) kcal mol\(^{-1}\)) for the transformation of 4 into 3, the computed barrier being consistent with the slow process seen experimentally. The hydrogen transfer in TS(Int1-3) is accompanied by an isomerization of the ligand to its distorted mer–\(\kappa^3\)-P,C,P form (\(\Delta G^{\text{int}}\)–Rh–P 138.8°). Complex 3 is energetically stabilized by a mere 1.8 kcal mol\(^{-1}\) relative to 4. The marginal exergonicity of this process is in line with the establishment of an equilibrium between these two species, as confirmed by experiment.

The lowest-energy pathway for the formation of 3 from 5 is shown on the right-hand side of Figure 4. Precursor complex 5 features an approximately square-planar geometry around the Rh\(^{3+}\) center, with the POP ligand adopting a cis–\(\kappa^2\)-P,P arrangement (\(\Delta G^{\text{int}}\)-Rh–P 100.9°) and computed Rh–H and Rh–C distances of 2.48 Å and 3.50 Å, respectively, to the central C–H bond of the ligand. Computed AIM and NBO parameters suggest that the Rh–H–C\(_2\) interaction is of closed-shell electrostatic nature, in line with a weak anagostic interaction.\(^{16,18}\) Oxidative addition of the \(C^+–H^+\) bond across the P\(_{\text{POP}}\)-Rh–P\(_{\text{Ph3}}\) vector occurs with a barrier of 26.4 kcal mol\(^{-1}\) to yield intermediate 6 (\(-5.1\) kcal mol\(^{-1}\)). Activation of the C–H bond in TS(5-6) is accompanied by movement of the P\(_{\text{Ph3}}\) ligand into the axial position. We have also considered other possibilities for this reaction step, none of which presented a feasible alternative. Oxidative addition across the P\(_{\text{POP}}\)-Rh–H vector in the alternative trans-isomer 5' shifts the energy profile upwards by \(-10\) kcal mol\(^{-1}\) (see ESI). A search for a concerted C–H activation step via \(\sigma\)-bond metathesis proved unsuccessful. Experimentally there is an excess of PPh\(_3\) present in solution, and so we also scrutinized the possible effect of C(H)OH···PPh\(_3\) H-bonding on the C–H activation. Under these circumstances the barrier is notably lowered (\(\Delta G^{\text{int}} = 18.5\) kcal mol\(^{-1}\), relative to 5r, grey profile in Figure 4). The optimized structure of the corresponding transition state TS(5r-6r) is shown in Figure 5. The optimized bond parameters in TS(5r-6r) closely resemble those in TS(5-6), with Rh···C\(_2\), Rh···H\(_2\) and C···H\(_2\) distances of 2.45, 1.61 and 1.43 Å, respectively. The (O)H·PPh\(_3\) distance is 2.45 Å, similar to the H-bond in complex 5r. Complex 6 exhibits an octahedral coordination geometry around the Rh\(^{3+}\) center, featuring a fac–\(\kappa^1\)-P,C,P tridentate ligand with the Rh–C bond trans to PPh\(_3\). Facile reductive elimination of the cis-hydrides in 6 proceeds with a barrier of 11.4 kcal mol\(^{-1}\) readily generating the final product 3 upon loss of H\(_2\). The overall reaction rate is determined by the initial oxidative addition step at 18.5 kcal mol\(^{-1}\) and this reduced barrier is consistent with the observation that 5 is transient at room temperature. Note that although the formation of 3 is computed to be slightly endergonic relative to 6 (\(\Delta G^\ddagger = +3.3\) kcal mol\(^{-1}\)), experimentally species 3 and 6 are in equilibrium which can be driven to 3 by removal of H\(_2\) upon degassing the solution.

Experimentally, the NMR characterization of 5 points to it being fluxional in solution and, moreover, that temperature-dependent coordination of PPh\(_3\) to the Rh center also occurs. Computationally, the trigonal-pyramidal and trans–\(\kappa^2\)-P,P isomers of 5 lie \(-\)10 kcal mol\(^{-1}\) above the cis-isomer and so these may be kinetically accessible in potential H/PPh\(_3\) exchange pathways.\(^{19}\) Formation of a trigonal-bipyramidal 18-electron complex, 5PPh\(_3\), via axial addition of PPh\(_3\) to 5 was computed to be energetically strongly favored (\(\Delta G^\ddagger = -7.6\) kcal mol\(^{-1}\)), even when the basis set superposition error (BSSE) was taken into account. This value runs counter to experimental evidence suggesting a dynamical equilibrium in which PPh\(_3\) reversibly binds to 5, (i.e. a thermoneutral process with \(\Delta G^\ddagger = 0\) kcal mol\(^{-1}\)). Although dispersion-corrected DFT can predict phosphine-metal binding energies with good accuracy,\(^{20}\) in the present example the metal-ligand bond strength appears to be strongly overestimated by the calculations. Of a range of functionals that were tested, B3LYP-D3 performs well for the phosphine binding energy (see Table 2).\(^{21}\) However, with this approach the overall barriers linking 4 to 3 and 5 to 3 are in

Table 2. Summary of the functional-dependence of phosphine binding energies according to the equation 5 + PPh\(_3\) ⇌ 5PPh\(_3\) (\(\Delta G_{\text{bind,BSE}}\) in kcal mol\(^{-1}\)), as well as key energy spans for the overall reaction profile in Figure 4 (see this figure for the definition of \(\Delta G(1), \Delta G(2), \Delta G(2')\)).

<table>
<thead>
<tr>
<th>Functional</th>
<th>(\Delta G_{\text{bind,BSE}})</th>
<th>(\Delta G(1))</th>
<th>(\Delta G(2))</th>
<th>(\Delta G(2'))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP-D3</td>
<td>-13.6</td>
<td>22.2</td>
<td>22.6</td>
<td>14.6</td>
</tr>
<tr>
<td>B97-D3</td>
<td>-7.6</td>
<td>21.1</td>
<td>26.4</td>
<td>18.5</td>
</tr>
<tr>
<td>B3LYP-D3</td>
<td>+0.1</td>
<td>25.6</td>
<td>29.9</td>
<td>21.5</td>
</tr>
<tr>
<td>M06</td>
<td>+8.6</td>
<td>24.9</td>
<td>33.7</td>
<td>24.4</td>
</tr>
</tbody>
</table>
excess of 25 kcal mol\(^{-1}\), rather too high for these room temperature processes. It seems that no single functional can provide balanced energetics for the various ligand binding and bond activation steps in this system. Nonetheless, our conclusions regarding the mechanism for the convergent formation of 3 from 4 and 5, respectively, obtained with the B97-D3/B32/BP86/BS1 protocol are qualitatively in good agreement with the experimental observations.

It appears to be plausible that dissociation of PPH\(_3\) from 5+PPH\(_3\) must occur prior to C–H bond activation to give 6. Indeed, a stepwise relaxed scan of the Rh···C distance in 5+PPH\(_3\) induces dissociation of one PPH\(_3\) ligand, restoring the square-planar geometry of 5 before accessing TS(5-6). The computed intrinsic reaction coordinate clearly confirms that TS(5-6) connects 6 to 5, providing support for 5 as an intermediate along the reaction profile.

Conclusions

[RhH(PPh\(_3\))\(_2\)] reacts with both the POP ketone (1) and POP alcohol (2) precursors to produce \(\alpha\)-hydroxyalkyl (3) through convergent pathways. A number of key intermediates for both branches of this reactivity were either isolated and fully characterized or characterized in situ by NMR spectroscopy. In particular, reaction with 1 gives intermediate 4, a rare example of a trapped \(\eta^2\)-ketone hydrido complex that subsequently undergoes insertion. With 2 the reaction proceeds via C-H activation geminal to the hydroxyl group. Independent synthesis of hydrido chloride complex 7 provided evidence of the feasibility of this novel C-H activation.

The underlying mechanisms were further validated by DFT calculations. These show the formation of 3 from 4 involves initial mer···fac-isomerization of the ligand followed by rate-limiting insertion. For the generation of 3 from POP alcohol precursor 5, the initial C-H oxidative addition is rate-limiting, and this process is facilitated by the presence of PPH\(_3\) which H-bonds to the C(H)OH moiety of the ligand.

The observed reactivity supports \(\alpha\)-hydroxyalkyl complexes as competent intermediates in ketone hydrogenation catalyzed by rhodium hydrides, and suggest that 1 and 2 may be 'non-innocent' ligands in reported hydrogenation catalyst systems. This work demonstrates a new strategy via ketone insertion to access PC\(_3\)P and PC\(_2\)P pincer complexes and their potential in catalysis.

Experimental

General information

All manipulations were carried out under nitrogen using a glove box and/or Schlenk techniques. All reactions were performed in glassware that was oven-dried for at least 12 h. Benzene was distilled over sodium and benzophenone under a nitrogen atmosphere and stored over 4 Å molecular sieves prior to use. Diethyl ether and n-hexane were dried over activated alumina using an LC Technology Solution Inc. SP-1 Solvent Purification System and deoxygenated prior to use. C\(_6\)D\(_6\) was stirred over CaH\(_2\) at room temperature under a nitrogen atmosphere overnight prior to distillation under reduced pressure and storage over 4 Å molecular sieves. Toluene-d\(_8\) was deoxygenated and stored over 4 Å molecular sieves prior to use. [RhH(PPh\(_3\))\(_2\)], and ligands 1 and 2 were prepared according to reported methods.\(^{21}\)

NMR spectroscopy data were obtained using Bruker AV-300, AV-400 and AV-500 spectrometers. HRMS (ESI-TOF) spectra were obtained using an Agilent Technologies 6230 TOF LC/MS. IR spectroscopy data were obtained using Bruker ALPHA FTIR spectrometers.

Synthesis of Complex 3

1 (10 mg, 0.018 mmol) and [RhH(PPh\(_3\))\(_2\)] (21 mg, 0.018 mmol) were added into a NMR tube under N\(_2\) atmosphere. The components were dissolved in C\(_6\)D\(_6\) (0.6 mL) to form an orange solution immediately, which turned green overnight. NMR analyses showed the reaction to be virtually quantitative in the formation of complex 3.

Synthesis of Complex 7

Benzene (2 mL) was added to a mixture of 1 (55.1 mg, 0.100 mmol) and [RhH(PPh\(_3\))\(_2\)] (115.3 mg, 0.100 mmol) and the resultant orange solution stirred at room temperature for 30 min, after which the solution was filtered. The filtrate was evaporated to give an orange residue and n-hexane (15 mL) was added. After trituration of the mixture for 5 min, the solid was filtered, and washed with diethyl ether (2 x 2 mL) and then n-hexane (5 x 10 mL). After drying in vacuo, the product was isolated as an orange solid (64 mg, 70 %).

Method B: Li[N(SiMe\(_3\))]\(_2\) (11.7 mg, 0.07 mmol) was added to solution of 7 (66.7 mg, 0.07 mmol) in C\(_6\)H\(_6\) (5 mL) at room temperature and stirred for 15 min. The solution was rapidly evaporated under vacuum and then diethyl ether (5 x 10 mL) was added. After trituration of the mixture for 5 min, the solid was filtered and washed with diethyl ether (2 x 10 mL) and then n-hexane (2 x 10 mL). After drying in vacuo, the product was isolated as an orange solid (31 mg, 65 %).

Experimental

General information

All manipulations were carried out under nitrogen using a glove box and/or Schlenk techniques. All reactions were performed in glassware that was oven-dried for at least 12 h. Benzene was distilled over sodium and benzophenone under a nitrogen atmosphere and stored over 4 Å molecular sieves prior to use. Diethyl ether and n-hexane were dried over activated alumina using an LC Technology Solution Inc. SP-1 Solvent Purification System and deoxygenated prior to use. C\(_6\)D\(_6\) was stirred over CaH\(_2\) at room temperature under a nitrogen atmosphere overnight prior to distillation under reduced pressure and storage over 4 Å molecular sieves. Toluene-d\(_8\) was deoxygenated and stored over 4 Å molecular sieves prior to use. [RhH(PPh\(_3\))\(_2\)], and ligands 1 and 2 were prepared according to reported methods.\(^{21}\)
In situ characterisation of Complex 5

To a sample of 3, prepared from 1 and [RhH(PPh3)2] in Toluene-d6 (0.6 mL) as described above, was applied a pressure of hydrogen gas (4 atm). The sample was then analysed using VT-NMR spectroscopy.

Selected NMR spectroscopic data for 6 at 233 K: 1H NMR (500 MHz, CD3OH) = δ 6.8 - 7.0 (td, J = 7.5, 1.4 Hz, 2H, Ar-H), 6.94 - 7.06 (m, 14H, 1H, Ar-H), 7.19 - 7.24 (m, 2H, Ar-H), 7.27 - 7.37 (m, 8H, Ar-H), 7.50 - 7.56 (m, 2H, Ar-H), 7.76 (t, J = 6.2 Hz, 1H, C(=O)-H); 31P[1H] NMR (202 MHz, CD3OH) = δ 45.6 (d, JPP = 78.0 Hz, 3J = 6.3 Hz, JPR = 14.9 Hz).

Preparation of deuterium labelled ligand 2a

A 1:1 mixture of D2O:THF was added to 2 followed by evaporation to dryness. Approximately 81% deuteration of the hydroxyl position at 2.25 ppm was determined by 1H NMR spectroscopy.

1H NMR (400 MHz, CD3OD) = δ 6.89 (d, J = 7.5, 1.4 Hz, 2H, Ar-H), 6.94 - 7.06 (m, 14H, 1H, Ar-H), 7.19 - 7.24 (m, 2H, Ar-H), 7.27 - 7.37 (m, 8H, Ar-H), 7.50 - 7.56 (m, 2H, Ar-H), 7.76 (t, J = 6.2 Hz, 1H, C(=O)-H); 31P[1H] NMR (162 MHz, CD3OD) = δ -17.3 (s, 2 P).

Preparation of deuterium labelled ligand 2b

Part A. (2-bromophenyl)diethylphosphine (2.00 g, 5.9 mmol) was dissolved in diethyl ether (25 mL). The solution is then treated with dropwise with n-BuLi in hexane (6 mL, 1.6 M, 9.6 mmol) at -78°C and then stirred for 30 min. Dimethylformamide-d3 (3 mL, 38.6 mmol) was added thereafter at -78°C. The mixture is then allowed to come to room temperature and was stirred overnight. Dilute aqueous HCl solution (20 mL) was added and then the aldehyde product was extracted using DCM (3 x 30 mL). The combined extractions were dried with Na2SO4 and then evaporated. The crude product was then recrystallised using methanol to give deuterio 2-(diphenylphosphino)benzaldehyde (0.901 g, 52%).

Part B. (2-bromophenyl)diethylphosphine (0.423 g, 1.24 mmol) was dissolved in diethyl ether (10 mL) and treated with n-BuLi (2.9 mL, 1.6 M, 1.78 mmol) at 0°C. The reaction mixture was stirred for 30 min, thereafter, deuterio 2-(diphenylphosphino)benzaldehyde (0.519 g, 1.78 mmol) was added. The reaction mixture was then stirred for an additional hour. The mixture is then allowed to come to room temperature and degassed dilute aqueous HCl solution was added and then the product was extracted with diethyl ether (3 x 20 mL). The solvent was removed under vacuum and the crude product was recrystallised using methanol to give ligand 2b product as a white solid (0.136 g, 20%).

AssOCIATED CONTENT

The Supporting Information, including additional experimental and computation details, is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

* rowan.young@nus.edu.sg

* t.kraemer@hw.ac.uk

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank the National University of Singapore and the Singapore Ministry of Education for financial support (WBS R-143-000-586-112 and R-143-000-666-114) and Heriot-Watt University for the award of a James Watt Scholarship.

REFERENCES

(3) Note: Related systems that partake in ligand assisted ionic hydrogenations typically rely upon the ligand to deliver a protic hydrogen, while the metal hydride transfers to the electrophilic carbonyl position (i.e. the metal-hydride also acts as a nucleophile as in route A), see: (a) Bullock, R. M. Chem. – Eur. J. 2004, 10 (10), 2366; (b) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248 (21-24), 2201; (c) Wang, D.; Austrac, D. Chem. Rev. 2015, 115 (13), 6621.

