Quantum-enhanced Capture Of Photons Using Optical Ratchet States

K. D. B. Higgins,† B. W. Lovett,*‡† and E. M. Gauger*,¶

†Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom
‡SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, United Kingdom
¶SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom

E-mail: bwl4@st-andrews.ac.uk; e.gauger@hw.ac.uk

Abstract

Natural and artificial light harvesting systems often operate in a regime where the flux of photons is relatively low. Besides absorbing as many photons as possible it is therefore paramount to prevent excitons from annihilation via photon re-emission until they have undergone an irreversible energy conversion process. Taking inspiration from photosynthetic antenna structures, we here consider ring-like systems and introduce a class of states we call ratchets: excited states capable of absorbing but not emitting light. This allows our antennae to absorb further photons whilst retaining the excitations from those that have already been captured. Simulations for a ring of four sites reveal a peak power enhancement by up to a factor of 35 owing to a combination of ratcheting and the prevention of emission through dark-state population. In the slow extraction limit the achievable power enhancement due to ratcheting alone exceeds 20%.

Introduction

The absorption of light and prevention of its reemission is essential for the efficient operation of solar energy harvesting devices.1 From the many causes of device inefficiency, few are as fundamental and seemingly insurmountable as energy loss via radiative recombination: any absorption process must have a companion emission process. This inherent absorption inefficiency is a result of the principle of ‘detailed balance’ and constitutes a key contribution to the famous Shockley-Queisser limit.2 However, pioneering work by Scully showed that it is possible to break detailed balance, given an external source of coherence;3 later work showed that this can be achieved by clever internal design alone, by using an optically dark state to prevent exciton recombination.4–7 Such dark states are populated passively if the energy separation between dark and bright states falls into the vibrational spectrum of the absorbing nanostructure: dissipation then preferentially mediates transfer into states from which optical decay cannot occur. This is thought to play a role in photosynthetic light harvesters,8,9 e.g. by means of dynamic localisation reducing the effective optical dipole strength.10

However, time spent in dark states is ‘dead time’ with respect to absorbing further photons, which in models considered so far4,7 would result in the loss of any subsequently arriving photons. In this Article, we show that certain exciton states, which we will call ratchets, can enhance photocell efficiency by enabling absorption of these subsequent photons, while preventing emission.
Model

We consider a ring of N identical two-level optical emitters (see Fig. 1), with nearest pairs coupled by a transition dipole-dipole interaction, governed by the Hamiltonian ($\hbar = 1)$:

$$H_s = \omega \sum_{i=1}^{N} \sigma_i^+ \sigma_i^- + S \sum_{i=1}^{N} (\sigma_i^+ \sigma_{i+1}^- + \sigma_{i+1}^+ \sigma_i^-),$$

(1)

where ω is the bare transition energy of the sites, S is the hopping strength, the σ_i^{\pm} denote the usual raising and lowering operators which create and destroy an excitation on site i, and $\omega_{N+1} = \sigma_1$. In the case of a single exciton on the ring, each of the eigenstates is an equal superposition of localized excitations at the different ring positions, each characterized by a relative phase $k_j = 2\pi j/N$ with $j \in 0, 1, \ldots, N - 1$ between itself and adjacent positions. Higher excited states can be found using the Jordan-Wigner and Fourier transforms and consist of multiple excitons, each with a distinct phase k_j. States with n excitons then form a band of eigenstates, each characterized by a set K of n different phase elements selected from the available k_j. If we label each eigenstate by its set of phases $|K\rangle$, with corresponding eigenvalue λ_K, then the Hamiltonian becomes

$$H_s = \sum_K \lambda_K |K\rangle \langle K|$$

[see Supplementary Information (SI)].

Optical transitions connect eigenstates differing by one exciton with rates proportional to $\Gamma_{K,K'} = |\langle K'|J^+|K\rangle|^2$ where $J^\pm = \sum_{i=1}^{N} \sigma_i^\pm$. An explicit analytical expression for $\Gamma_{K,K'}$ can be derived and is given in the SI. Only the fully symmetric $k_j = 0$ single exciton eigenstate has a dipole matrix element with the ground state, since here the transition dipoles interfere constructively. The other $N - 1$ single exciton eigenstates do not couple to the ground state via light with a wavelength that is much longer than the separation between sites. However, these $N - 1$ states do have dipole-allowed transitions to the second exciton band. They therefore have the potential for preventing re-emission of light, while still allowing further absorption of photons, creating more excitons that in a photovoltaic circuit can be converted into useful photocurrent. Such states are examples of ratchet states $|K_R\rangle$, which have the simultaneous properties:

$$\Gamma_{K_R}^- := \sum_{K'} \Gamma_{K_R,K'} \delta_{|K_R|,|K'|+1} = 0,$$

(2)

$$\Gamma_{K_R}^+ := \sum_{K'} \Gamma_{K_R,K'} \delta_{|K_R|,|K'|-1} > 0,$$

(3)

where $\Gamma_{K_R}^{(-,+)}$ is the sum of all transition rates connecting the ratchet eigenstate $|K_R\rangle$ to the adjacent band below (above) and $\delta_{i,j}$ is the Kronecker symbol.

For $N = 4$ and $S > 0$ the bright state in the single exciton band has the highest energy $\omega + 2S$, and the three ratchet states have energies ω, ω and $\omega - 2S$, see Fig. 2 and the SI. In a molecular system, the ratchet states can be reached following excitation into the bright state when the exciton loses a small amount of energy to molecular phonons (see Figs. 1a and 2a). Importantly, such vibrational modes have much shorter wavelengths than optical modes and can often be assumed to be local to each
Figure 2: Transition process map and energy level diagram of the three ring antenna models studied in this paper. Solid red lines denote primary absorption transitions for each case of the light harvesting cycle, whereas all other dipole-allowed optical transitions are depicted as thinner dashed red lines. The double-arrowsheads of these lines reflect the fact that absorption is invariably accompanied by a faster emission process. For clarity only the most relevant phonon transitions are shown as solid blue arrows; their single arrowhead reflects the directional preference of phonon-induced relaxation. Rarely populated levels are shown in gray, whereas all black levels and solid optical / phonon transitions are important and feature in their respective cycle. The panels show: (a) ratcheting, which is the natural configuration for an interacting ring antenna in condensed matter; (b) forced dark, where we artificially suppress optical transitions connecting the single and double excitation subspaces; (c) the ring antenna with all optical transitions allowed but in the absence vibrational relaxation.

Dynamics

In order to model the dynamics we use the QuTiP package15 to construct full open system dynamics in Bloch-Redfield theory, for each kind of environmental interaction. We always retain the full form of the resulting dissipator tensor since the secular approximation cannot be applied when a system has bands of closely spaced levels which may be more closely spaced than the corresponding dissipation rates.16,17

First, consider the dynamics due to the light-matter interaction Hamiltonian

\[H_{s-l} = \sum_{Q} \sum_{i=1}^{N} G_Q (\sigma_i^+ b_Q + \sigma_i^- b_Q^\dagger), \]

where \(b_Q^\dagger \) and \(b_Q \) are creation and annihilation operators for photons of wavevector \(Q \). The photon spectral density is constant across all transition energies, and enters into the master equation dissipator only via the single emitter decay rate \(\gamma_o \). Absorption and stimulated emission terms are weighted by the appropriate Bose-Einstein factor

\[N(\omega, T_o) = \frac{1}{\exp[\omega/(k_B T_o)] - 1}, \]

representing the thermal occupancy of the optical mode with interband transition frequency \(\omega_\Omega \) and at temperature \(T_o (= 5800 \text{ K for solar radiation}) \). Note that our choice here assumes the absorber is in radiative equilibrium with a black-body emitter at the temperature of the sun. This can be achieved, for example, by suitable concentration of the sun’s radiation, for example by placing the absorber in a spherical cavity18 (see also the discussion in the SI).

Second, the exciton-phonon interaction is accounted for through19

\[H_{s-p} = \sum_{i=1}^{N} \sum_{q} g_{q,i} \sigma_i^z (a_{q,i} + a_{q,i}^\dagger), \]

where for each site \(i \) \(a_{q} \) and \(a_{q}^\dagger \) are the creation and annihilation operators for phonons of wavevector \(q \) with energy \(\omega_q \) and exciton-phonon coupling \(g_q \). This interaction commutes

\[a_{q} a_{q'}^\dagger = \delta_{q,q'} a_{q} a_{q'}^\dagger, \]

\[a_{q}^\dagger a_{q'} = \delta_{q,q'} a_{q}^\dagger a_{q'}, \]

\[a_{q} a_{q'} = a_{q'} a_{q}, \]

\[a_{q}^\dagger a_{q'}^\dagger = a_{q'}^\dagger a_{q}^\dagger. \]
with $\sum_i \sigma_i^z$ and so only mediates transitions within each excited band. For simplicity, we again assume a spectral density $J(\omega)$ that is approximately constant across all intraband transition energies ω_{NN}, such that $J(\omega_{\text{NN}}) = \gamma_p$. We calculate appropriate phonon matrix elements for each transition, letting absorption and stimulated emission terms carry the appropriate Bose-Einstein factors $N(\omega_{\text{NN}}, T_p)$, with T_p the ambient phonon temperature. Reflecting the fact that phonon relaxation typically proceeds orders of magnitude faster than optical transition rates, we fix $\gamma_p = 1000 \gamma_o$. This separation of timescales allows population to leave the bright states before reemission occurs.

To complete the photovoltaic circuit, we include an additional ‘trap site’ t, with excited state $|\alpha\rangle$ and ground state $|\beta\rangle$, where excitons are irreversibly converted into work. The trap Hamiltonian is $H_t = \omega_t \sigma_t^+ \sigma_t^-$, where ω_t represents its transition frequency, and $\sigma_t^- = |\beta\rangle \langle \alpha|$. Henceforth, we shall consider the joint density matrix of ring system and trap, $\rho = \rho_s \otimes \rho_t$. Throughout the paper we use an incoherent hopping from a single site in the ring to the trap (see SI for an alternative model), and we fix the trap energy to be resonant with the state in which population is most likely to accumulate — unless otherwise stated, this is at the bottom of the first exciton band, $\omega_t = \omega - 2S$.

The theory of quantum heat engines provides a way for us to assess the current and voltage output of the ring device: The action of a load across the device is mimicked by the trap decay rate γ_t, which varies depending on the load resistance. The current is simply $I = e \gamma_t \langle \rho_\alpha \rangle_{ss}$, with $\langle \rho_\alpha \rangle_{ss}$ the steady state population of the excited trap state. The potential difference seen by the load is given by the deviation of the trap’s population from its thermal distribution:

$$eV = \hbar \omega_t + k_B T_p \ln \left(\frac{\langle \rho_\alpha \rangle_{ss}}{\langle \rho_\beta \rangle_{ss}} \right),$$

where k_B is Boltzmann’s constant and T_p the (ambient) phonon bath temperature. To study the relationship between current, voltage, and therefore power, we alter the trapping rate γ_t.

Letting $\gamma_t \to 0$ or ∞ leads to the well-known open and short circuit limit, respectively, however, our main interest in the following is in the region near the optimal power output point of the device.

Results and Discussion

We proceed by finding the steady state of the following master equation which incorporates the optical and phononic dissipator as well as the trap decay process:

$$\dot{\rho} = -i[H_s + H_t, \rho] + D_o[\rho] + D_p[\rho] + D_t[\rho] + D_x[\rho],$$

where $D_o[\rho]$, $D_p[\rho]$ are the Bloch Redfield dissipators for the photon and phonon fields discussed above, and $D_t[\rho] = \gamma_t (\sigma_t^- \rho \sigma_t^+ - \frac{1}{2} \{\sigma_t^+ \sigma_t^-, \rho\})$ is a standard Lindblad dissipator representing trap decay. $D_x[\rho]$ represents exciton extraction via incoherent hopping at rate γ_x from a single site on the ring to the trap (see Fig. 1b).

To expose the effect of the optical ratchets we now contrast the full model of Eq. (7) with two other artificial cases that exclude the possibility of ratchets: In the first, the ratchet states are rendered fully dark by setting all upwards transition matrix elements from them to zero, a scenario we refer to as ‘forced dark’ (FD) as indicated in Fig. 2b. In the second construct, we remove all phonon-assisted relaxation ($\gamma_p = 0$), meaning the system only undergoes optical transitions along the Dicke ladder of bright states — we term this ‘no phonons’ (NP), see Fig. 2c. All results in this section are based on the steady state of the system for $N = 4$, obtained by an iterative numerical method performed with QuTiP, and using the default parameters from Table 1 unless explicitly stated otherwise. Our choice of $\omega = 1.8\ eV - 2S$ differs from that in previous works: our subtraction of $2S$ ensures that the highest (bright state) level in the first band always remains at $1.8\ eV$ and absorbs at a fixed frequency.

In Fig. 3 we display the steady-state exciton
Table 1: Default model parameters; italic rows are plot parameters in certain Figures, as stated in the relevant captions.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Default value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic transition frequency</td>
<td>ω</td>
<td>1.8 eV - 2S</td>
</tr>
<tr>
<td>Hopping strength</td>
<td>S</td>
<td>0.02 eV</td>
</tr>
<tr>
<td>Spontaneous emission rate</td>
<td>γ_o</td>
<td>1.52×10^9 Hz $\equiv 1 \mu$ eV</td>
</tr>
<tr>
<td>Phonon relaxation rate</td>
<td>γ_p</td>
<td>$10^3 \gamma_o$</td>
</tr>
<tr>
<td>Extraction rate</td>
<td>γ_x</td>
<td>$10^{-1} \gamma_o$</td>
</tr>
<tr>
<td>Photon bath temperature</td>
<td>T_o</td>
<td>5800 K</td>
</tr>
<tr>
<td>Phonon bath temperature</td>
<td>T_p</td>
<td>300 K</td>
</tr>
</tbody>
</table>

Figure 3: (a) Steady-state exciton population and (b) relative ratchet enhancement compared to the FD scenario (see text), both as functions of the optical and phononic bath temperatures, and without any trap. The former is given in solar temperature units, $K_s = 5800$ K, other parameters are as in Table 1 except that $\gamma_x = 0$.

Using the heat engine model, we can now explore the performance of the four site ring as an energy harvester. We will focus on the dependence of the power output on two parameters: the coupling S, and extraction rate γ_x. For each parameter set, the trap decay rate γ_t is varied for maximum power output; example power traces as a function of γ_t can be found in the SI.

In Fig. 4 we display the absolute value of the power generated for the ratchet and NP scenarios, whereas in Fig. 5 we display the relative power output of ratchet states over each of the two artificial scenarios. To ensure fair comparison, for NP we set the trap energy to be resonant with the bright state at $\omega + 2S$, since the ratchet states at lower energy are inaccessible here (c.f. Fig. 2c). All three scenarios have lower output power when the trapping (charge separation) rates are low, since this creates a bottleneck in the cycle and limits the size of the photocurrent.

However, the ratchet states hold a great advantage over the other scenarios in this bottlenecked region, since this is precisely the situation in which excitations need to be held for some time by the ring before extraction is possible. The NP scenario only performs poorly in this case, since excitations in all likelihood decay before being extracted. Indeed, the relative power output of ratcheting over NP, shown in the left panel of Fig. 5, therefore rises to as high as a factor of 35. The right panel of Fig. 5 demonstrates the importance of ratcheting over dark state protection alone, with the ratchet...
Figure 4: Absolute power output in the ratcheting (blue surface) and NP (red surface) cases as a function of (single site) extraction rate γ_x and hopping strength S. Other parameters are as in Table 1. For each point, the optimal trap decay rate is found by numerical search. The sets of curves projected onto the side walls of the 3D plot are cuts through the data for fixed values of the appropriate parameter. The two surfaces cross in the region where the bottleneck is lifted, with ratcheting generating more power for a severe and intermediate bottleneck. The line at which the curves cross is projected onto the bottom (xy) plane of the figure.

In Fig. 5 we can see that the combined advantage of ratcheting and dark-state protection persists into a region where there is only a moderate bottleneck, i.e. up to $\gamma_x \sim 10^{-5}$ eV = $10\gamma_o$. Referring to Fig. 4 we see that the ratchet power output in this region is already close to its maximum. Even so, if the extraction rate was arbitrarily tunable, then even a moderate bottleneck could be avoided completely and the main advantage of ratcheting and dark-state protection removed. However, in photosynthesis, creating a fast extraction rate carries with it a clear resource cost: whereas antenna systems can be comparatively ‘cheap’, reaction centres carry a much larger spatial footprint, being typically embedded in membranes and requiring significant surrounding infrastructure (such as concentration gradients produced by proton pumps). The severity of the bottleneck is likely to be inversely proportional to the number of reaction centres. A photocell design exploiting ratcheting in the moderate bottleneck regime would be likely then to generate optimal power per unit volume of material — and similar design principles will apply to artificially designed molecular light harvesting systems (see SI for a quantitative discussion).

The choice of interaction strength S is also important. Ratcheting achieves optimal results for $S \sim 0.05$ eV in the bottlenecked region. This dependence arises because the size of S determines the gap between bright and dark or ratchet states. In turn, this controls the effective rate for ‘upwards’ phonon-assisted transitions within excitation bands, as those rely on the absorption of a phonon and are proportional...
to \(N(\omega_\Pi, T_p) \). Consequently, larger values of \(S \) entail more directed dissipation into the lower states of each band, boosting the occupation of ratchet states. However at the same time, increasing \(S \) leads to a lower ratchet state energy and so a lower trap energy – and hence to a voltage drop. The trade off between these two competing influences leads to a maximum in ratchet performance.

The fill factor \(P_{\text{max}} / (V_{\text{max}} \times I_{\text{max}}) \), where \(P_{\text{max}} \) is the maximum power point and \(V_{\text{max}} \) and \(I_{\text{max}} \) are the open- and short-circuit voltage and current, respectively, is an important indicator of the practical performance of photovoltaic devices. We plot fill factors obtained for our models in Fig. S7 of the SI; these are all in the range \(\approx 75 \pm 5 \). Ratcheting scores consistently slightly below NP, however, the difference between the two remains small in the regime of interest, and ratcheting remains advantageous with an overall power output that is substantially higher than NP.

As we discuss in detail in the SI, ratcheting continues to convey an advantage in the presence of moderate levels of various real-world imperfections, such as site energy disorder, non-radiative recombination, and exciton-exciton annihilation. In particular, we find that for modest disorder — i.e. when the variation in site energies is less than the coupling strength — the performance of the ratchet model is broadly unaffected. Notwithstanding the fact that all our numerical results derive from a ring with \(N = 4 \), the single ratcheting step we have focussed on is available for any ring size with \(N \geq 3 \). We note that a second tier of ratcheting requires \(N \geq 5 \), however, whilst ratcheting across multiple tiers may be of fundamental interest, we expect it to yield diminishing returns when it comes to boosting the output power of a photocell under the illumination condition considered in this study. As a consequence, there seems to be neither much of an advantage nor a fundamental drawback associated with moving to rings comprising more than four sites.

Conclusion

We have investigated the light harvesting properties of coupled ring structures, inspired by the molecular rings that serve as antennae in photosynthesis. Considering a vibrational as well as an electromagnetic environment allows the system to explore the full Hilbert space rather than just the restricted subset of Dicke ladder states. We have shown that the off-ladder states possess interesting and desirable properties, which can be harnessed for enhancing both the current and power of a ring-based photocell device. Dark-state protection is available under ambient conditions (i.e. direct sunlight illumination), whereas optical ratcheting unlocks additional advantages for systems brought into radiative equilibrium with the sun.

Several possible systems could be used to observe the effect (also see SI). These range from tailor made demonstrator structures comprising superconducting qubits,\(^{23}\) where the radiation field is in the microwave range. Closer in spirit to what we have proposed are macrocyclic molecules\(^{24}\) with optical transitions, or NV\(^{25}\) and SiV\(^{26}\) centres in diamond, which have optical transitions that enable the study of the electronic dynamics at the single centre level. Our approach generalises existing concepts for dark state protection\(^{4,5}\) to arbitrary numbers of sites and importantly includes multi-exciton states, which introduce the ratcheting effect as a distinct additional mechanism for enhancing the overall light-harvesting performance. The optical ratchet enhancement is particularly well suited to situations where exciton extraction and conversion represent the bottleneck of a photocell cycle.

In future work it would be interesting to explore combining optical ratcheting with enhancements of the primary absorption process, for example by exploiting the phenomena of stimulated absorption\(^{27}\) or superabsorption.\(^{17}\)

Supporting Information Available: Diagonalisation of coupled ring structures; explicit expressions for optical transition matrix elements; discussion of optical excitation rates; number of excitons in the steady-state in the absence of extraction for all three scenarios.
discussed in the main text; an alternative extraction model; an example current and power vs voltage curve; calculated fill factor for all three models; snapshots illustrating the extraction bottleneck and hopping strength dependence; maximising higher power generation per unit area; a detailed discussion of imperfections (site energy disorder, non-radiative recombination, and exciton-exciton annihilation); discussion of several systems that could be used to observe the effect. This material is available free of charge via the Internet at http://pubs.acs.org/.

Acknowledgement The authors thank William M. Brown for insightful discussions. This work was supported by the EPSRC and the Leverhulme Trust. BWL thanks the Royal Society for a University Research Fellowship. EMG acknowledges support from the Royal Society of Edinburgh and the Scottish Government.

Notes and References

(11) Note that we here assume all optical dipoles are aligned perpendicular to the plane of the ring, which is different from the tangential alignment typically encountered in photosynthetic rings.

(14) Spano, F. C. Fermion excited states in one-dimensional molecular aggregates

