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Abstract  
 The paper is focused on the discussion of a new double-axle flexible bogie for a 

high-speed train. The main feature of the flexible bogie is that is consists of two sub-

bogies connect with diagonal links. Moreover an elastic connection between a 

carriage and both wheelsets is introduced. These features, helping to increase the 

bogie flexibility by passing tracks with a low radius of curvature, are studied in this 

paper numerically. The results demonstrate a great potential of the bogie and ability 

to travel with no significant oscillations at speed of 432km/h. Numerical 

optimization of the bogie’s parameters is performed in order to maximize the ride 

comfort. 
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1 Introduction  
  

The worldwide trend in last 10-15 years in railway transportation has been pointing 

towards increasing the axial load and speed of trains, with the latter being a special 

issue for the passenger trains. The idea of the high-speed passenger transportation is 

supported by the fact that it is not only environmentally friendly but also because it 

can compete against the air travel in distances from 500 to 800 km. Many European 

and Asian countries have regular high-speed train services, usually operating 

between large cities. In Europe, including the UK, the normal operating speed is 

currently around 200km/h, whereas in China it is 300km/h (Maglev train systemis 

not considered). In general the term “high-speed” is very broad and related to any 

speed above 200km/h, although usually it means a travel with 200km/h-250km/h. 

However, in the future this term will imply  an operating speed up to 400km/h. At 

this speed a train exerts large forces onto the track, which acts back onto the train 

and along with other forces (aerodynamic, for instance) making train oscillate in all 

directions. These oscillations, observed in wheelsets, bogies and carriages may lead 

to passengers’ ride discomfort if not have more severe consequences. Therefore the 

safety remains the major concern of a high-speed travel. 



 

 

Bogie may be considered as the most important part of a train from the dynamics 

point of view, since it carries the load, provides guidance of wheelsets, connecting 

wheelsets with a carriage and suppose to attenuate adverse vibrations. In last 

hundred years various bogie designs have been proposed and studied [1].  In general 

there are two types of worldwide accepted bogies: single-axle or two-axel, where the 

former has a single wheelset whereas the latter has a double wheelset. Example of a 

single-axle and two-axel bogies are shown in Figure 1 left and right 

correspondingly. Since two bogies are usually required for a carriage, a two-axle 

bogie has lower value of the load per axle. However, the rigid construction of the 

traditional two-axle bogie creates certain difficulties when curving, limiting the 

minimal curve radius as well as has some other issues [1],[2]. 

 
Figure 1. Single-axel bogie for Lirex and two-axel bogie. 

 

This paper discusses a novel two-axel bogie that has been developed in Moscow 

State University of Railway Transportation. The paper is structured as following. 

The bogie design is presented in section 2, whereas in section 3 governing equations 

of motion are discussed. Section 4 present results of numerical modelling and 

optimization and section 5 has conclusions. 

 

 

2 Novel Bogie Design  
 

As it has been mentioned above, the standard two-axel bogie does not suit for 

high curvature turns, which is essential in some parts of the world. The major benefit 

of the presented bogie is its design that allows the wheelsets match the radius of the 

curve, thus decreasing the force of the interaction between wheels and rails [2]. Two 

(left) and three (right) stages suspension, implemented in the proposed bogie, are 

presented in Figure 2. Three-stage suspension has an additional connection between 

the wheelset and carriage.  

 



 

              
Figure 2. Two- (left) and three (right) stage 

 

The primary connection, denoted by number “1” in Figure 2, connects the wheelset 

and bogie, the secondary connection, denoted by number “2” connects the bogie and 

carriage, whereas the third connection, denoted by number “3” connects directly the 

wheelset and carriage. Diagrams presented in Figure 2 demonstrate the concept. It 

should be mentioned that the idea of connecting two bogies with diagonal linkage 

itself is not new [1], however other design features make the proposed design rather 

unique.  

 

Item 1 in Figure 3 represents a pneumatic suspension directly connecting the 

wheelsets and carriage, so that the static load is directly transmitted. This became 

possible due to the bogie design and is the subject of investigation here. In Figure 3 

items 2 represents shock absorbers, connecting the wheelset and carriage and located 

at an angle to the longitudinal axis of the trolley, whereas item 3 represents springs 

connecting the bogie and carriage and acting in vertical and transverse directions. 

Item 4 represents a diagonal linkage which allows two wheelsets turn with respect to 

each other in yaw when curving, keeping them together. This arrangement provides 

an opportunity for mitigating hunting oscillations of the carriage and bogies. 

Mechanical properties of these elements will be discussed in the next section. 



 

 
 

Figure 3. The high-speed bogie with the pneumatic suspension. 

 

 

3 Complete mathematical model with a new bogie 

 

To study the behaviour of the train with the new bogie under various conditions a 

mathematical model has been created. Figure 4 and Figure 5 demonstrate the 

rheological elements that have been used for modelling in all directions. Figure 5 

and Figure 6 show the front and top view of the model correspondingly. The 

developed model considers a motion in 3 translational and 3 rotational directions. 



 

 
Figure 4. The sketch of the carriage, bogie and wheelset (front view) 

 

 
Figure 5. The sketch of the carriage, bogie and wheelsets (side view) 

 

The governing equations of motion of the model have been derived based on 

D’Alembert’s principle. The selected generalized coordinates allowed writing the 

equations of motion in the following form for translational and rotational motion 

correspondingly:  



 

inF my=-
 

in űz z
zM J=-
 

where Fin are forces with respect to “y” axis, Min
z
 are the moments around “z” axis 

and  other directions can be treated similarly. Using a linear stiffness and damping 

elements one can write forces as:
 

f ;F s= D 

d ɓ ,F = D 

where D is the relative deformation of the corresponding elastic element and D is 

the relative velocity of the corresponding viscous elements. Thus, the set of 

equations in 3D space can be written as: 
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Yaw angle of the wheelset: 
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 Vertical direction of the wheelset:  
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Lateral direction of the bogie: 
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 Roll angle of the bogie: 
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Vertical direction of the bogie: 
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Yaw angle of the carriage:  
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Roll angle of the carriage: 
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Vertical direction of the carriage: 
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Pitch angle of the carriage: 



 

( )( )y y y y
ʠʥ.ʢ 1 4 ʢʧ7 ʢʢʧ1 ʢ ʢʧ2 ʢ ʢʧ8 ʢ
y z z z zM ʘ ʘ F F F F- - - -

-- - -+ + Ö + - - + 

( )( )y y y y
1 4 ʢʧ5 ʢʢʧ3 ʢ ʢʧ4 ʢ ʢʧ6 ʢ0z z z zʘ ʘ F F F F- - - -

-- - -+ - Ö + - - =. 

 

The above formulas use the following notation: 
f

b1–w1
xF -

 – the elastic forces between 

the bogie and wheelset in “x” direction (even numbers for the right rail, odd for the 

left rail); 
f

b–w1
zF -

 – the elastic forces between the bogie and wheelset in “z” direction 

and 
f

b1–w1
yF -

 – the elastic forces between the bogie and wheelset in “y” direction.  

Flat leaf suspension has non-symmetrical stiffness characteristics because the 

lower part of it is longer than the upper one resulting in higher force required to 

move the bogie upwards than downwards. This characteristics can be described by 

the following equation (k =0,1): 
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There are forces acting from the rails onto the wheelset, which can be divided into 

two groups: elastic forces due to a side contact of the wheels and rails and creep 

forces due to the contact between two surfaces. 
f

r-w1
yF -
– the elastic forces, exerted 

onto the wheels from the rails due to a side interaction, with the gap equal to 0,007 

м, in y direction: 
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This characteristic is presented in Figure 6 left.  

 



 

 
Figure 6 – Stiffness characteristics of the rail and piecewise linear characteristics of 

the elastic forces between the carriage and bogie 

 

 

The lateral and longitudinal creep forces have been derived based on the Kalker 

theory with corrections [3],[4]. In the above notation cr
RxF  – projection of the creep 

forces in “x” axis, whereas cr
RyF – projection of the creep forces in “y” axis. 

Moreover, the gravity force grN  and moment grM
 
have been applied to the 

wheelset:  

gr w2
i

N ʇ y
S
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Viscous forces between the bogie and carriage in “x” and “z” directions are denoted 

as 
d

c–b1
xF -

 and 
f

b1 c
zF -
-correspondingly. The elastic forces between the bogie and 

carriage in “y” direction have been modelled as piecewise linear function: 
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which is presented in Figure 6 right.  

 



 

Diagonal forces in the interacting bogies have been denoted as 
f

b2 b1
yF -
- , 

f
b2 b1
ʭF -
-

f
b2 b1
zF -
-   in “yò, ñʭò and “z” directions correspondingly. In total a set of 37 

ordinary differential equations has been derived and will be studied in next section.  

 

4 Modelling and numerical results 
  

In the first phase the task of choosing parameters of the spring suspension, ensuring 

the compliance with the lateral variability was undertaken, and investigation of the 

type of oscillations was conducted. Numerical simulations have been conducted 

using Dormand-Prince (RKDP) method. Due to a large number of calculations 

required Nelder-Mead optimization method has been implemented.  The main 

reason is the fact that this method allows performing numerical calculations in 

parallel, significantly reducing the amount of computational time. To select 

parameters of the spring suspension an optimization method was implemented, 

where the target function was the intensity of crossings ()iu t  above a certain level 

used as an indicator of dynamic qualities (DQ) [2],[5]: 
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where ()iS u   - mean square displacement and ()e if u  - is the effective 

frequency of the random processes ()iu t , defined as: 

() ()
ii uS u G f df

¤

-¤

= ñ      (2) 
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()

()2
e

1
ii u

i

f u f G f df
S u

¤

-¤
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and ()
iuG f  is the spectral density of the DQ random process, obtained as a result 

of the numerical simulations.  

 The DQ was based on the total vertical and horizontal acceleration of the carriage 

ʢz S и ʢy S at the points of connections of the bogies, as well as the sum of the 

vertical and horizontal coefficients of the dynamic load at all suspension 

points
,
ʜ
z y
ʢS. Thus, the dynamic quality of the system is defined by (1): the target 

function and eight quality coefficients. Since it is a very hard optimization problem 

in 9D space, the procedure of separate optimization has been adopted.  First, the 

suspension optimization of the carriage in the horizontal direction is performed. 



 

Then, with the obtain set of parameters from the first step, the suspension 

optimization in the vertical direction is conducted. Finally, the optimization in the 

horizontal direction is performed with the parameters obtained from the second 

stage.  

 

Let’s consider, for example, the results obtained at the first stage. In this 

stage a nondimensional parameter of DQ were used ()[]i i iU H u u=  where ()iH u  

is the mean value of the maximums of random process ()iu t  according to Kramer 

formula, assuming that the distribution of maximums ( )f H  of Gaussian stationary 

random process ()if u , which is described by the double exponent law: 
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where ()ʨ it u  the length of the sample ()iu t , which was taken 38.1 sec. 

To find optimal parameters of the suspension at the first step 56250 cycles of 

optimization has been conducted. Some numerical results of the optimization are 

shown in Figure 7. Each circle has three values 
1U ,

2U  and 
4U , where its diameter 

is related to the dynamic coefficient and its colour reflects the value of the cost 

function. Point 1 in figure 7 corresponds to the optimal values for the suspension. In 

point 1 values of all parameters are acceptable, i.e. lie within the specified range and 

the total intensity of excursions is 1.51. Having computed this number, all numerical 

simulations have been conducted for finding stable motion of the carriage along 

straight path, turns as well as influence of random vibrations onto the system.  

Stability of motion along a straight path has been done numerically by integrating 

the set of nonlinear differential equations [6]. It has been observed that the intensity 

of oscillations increases with the increase of carriage speed, although the oscillations 

remain decaying. When the critical speed 
crv is attained the oscillations become 

sustainable and when 
crv v>  amplitude of oscillations will increase until a limit 

cycle is reached. The critical speed of the bogie with respect to the lateral 

oscillations in this case was obtained 
crv =806km/h.  Safety regulations state that the 

maximum speed a carriage can operate at is defines as / 3c crv v= =466km/h. 

 

 



 

 
Figure 7 demonstrates a set of intermediate values of the cost function and DQ at the 

various stages of the optimization procedure in 5D space.  

 

The proposed bogie can move along curved paths with a relatively small radius of 

50m. The study of the bogie motion along a curved path has been based on the 

theory of relative motion and non-inertial local coordinate systems. The numerical 

simulations have shown that the bogie keeps all the wheels on the rails, therefore the 

side forces are equal along both the axes and are below 70kN. This is a great 

advantage compare to other bogies, which usually have larger load to the outer 

wheel of the front wheelset. 

To show the advantage of the proposed bogie a set of numerical simulations 

with various radius has been performed. These results have been analysed and an 

empirical formula connecting the velocity and the radius has been derived 

max ʨ5,29 Rv = . For other standard bogies this number is 
max ʥ4,6 Rv = ,  which 

indicates that the developed bogie may run along a curve path with a radius 30% 

lower than that for the typical bogie. This has direct influence onto the cost of 

building the railways.  

To study the influence of the carriage speed onto the DQ coefficients, a set 

of nonlinear differential equations with random multidimensional stationary 

processes acting in the horizontal and vertical direction from both rails [1,2,7]. The 

non-stationarity of the input and nonlinearity, presented in the system, including the 

nonlinearity on Figure 4 and Figure 5 indicate that the output process will be 

nonstationary. 

 

To obtain some response characteristics for comparison with other responses, 

it is required to average over a large number of samples, and in this case a number 

of samples for each speed value was taken N=4096 with a time step t=0.0031sec, 

resulting in total time T=38.1 sec. The overall number of points within a sample was 



 

50331648. Figure 8, for example, demonstrates several samples generated for the 

horizontal roughness of the left rail at 20m/s. 

 

 
Figure 8. Generated roughness of a rail at 20m/s (top left), carriage motion (top 

right), spectral density of the carriage at 20m/s (down left). 

 

Lateral carriage oscillations ()ʢy t  can be observed in Figure 9. It can be seen that 

some samples are very much different in the amplitudes and frequency contents, 

which supports the fact that the process is nonstationary.  

 

 

 

To study the random process ( )ʢ 1 2,  y t t   it is required to obtain a square matrix. 

Since the number of ()ʢ 1y t was 
ʨN =12288, the number of samples ()ʢ 2y t was 

N=4096, therefore every third value was selected from ()ʢ 1y t  and st 0093.0
1
=D . 

Therefore the matrix ( )ʢ 1 2,  y t t  had 4096x4096, which is equivalent in time to 

38.1x38.1sec. This matrix was used to build other characteristics of the random 

process, such as a correlation function ( )1 2,yR t t  and spectral density ( )1 2,y fG f : 
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For the case of v=20m/s a two-dimensional distribution:   
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Based on the obtained distribution the autocorrelation function and spectral density 

have been obtained for the lateral displacement of the carriage and the frequency 

range was between 0.1Hz and 10 Hz. The spectral density is presented in Figure 8. It 

can be seen that all the energy at 20m/s is contained within the frequency range of 

0.2Hz up to 2.25Hz and 10Hz frequency has never been reached.  

 

The frequency at the maximum corresponds to the frequency of lateral vibrations, 

whereas the frequencies of smaller local maximums can be approximately described 

as: 
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Based on the fact that the peaks amplitudes at the diagonal are higher than that 

everywhere else, one can state that the system responds with ultraharmonic 

oscillations 2:1 and 3:1. The spectral response of the carriage accelerations has 

much more complicated structure. 

 

Another set of simulations has been conducted for v=120km/h. Figure 9 shows the 

results for dynamic coefficients connecting the carriage and bogie, whereas Figure 9 

shows their spectral representation. The main peak in Figure 9 is observed at 

0.75Hz, and there are two minor symmetrical with respect to main diagonal peaks 

with coordinates (0.7Hz, 4.8Hz).  

 

Much more complex peaks layout can be observed in Figure 9 for the coefficients 

connecting the bogie and wheelset. The number of small peaks along the edges of 

the plot correspond to ultraharmonic oscillations with frequencies 2,3,4…n-times 

higher the main resonance frequency.   

 



 

 

 
Figure 9. Dynamic coefficient connecting the carriage and bogie at 120 m/s (top 

left), connecting the carriage and bogie (top right), the bogie and wheelset (low left), 

 

 

 

Figure 10. Left: Dependence of DQ on the carriage speed: 1 – between the bogie 

and bushing, 2 – between the carriage and bogie, 3 – between the carriage and 

bushing, 4- maximum acceleration. Right: Ride coefficient vs train speed. 

 



 

Having obtained the spectral densities it is possible to calculate the variance, the 

dominant frequencies and the mean values of peaks depending on the carriage 

speed. In figure 10 left one can observe that all DQ factors are inside the acceptable 

range, however one of the peaks is at 20m/s. It can be explained by the fact that the 

excitation frequency at this speed coincides with that of the carriage leading to the 

resonance. It also can be seen that at speeds above 80m/s DQ factors increases and 

at 120m/s approaching their critical values. 

 

The ride smoothness coefficient C was calculated according to the following 

formula: 

ʚ ʚ
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ʥ ʥ

26,67
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Figure 10 right shows dependence of the ride smoothness coefficient on the train 

speed and it can be observed that up to 108m/s the quality of a ride is excellent. 

Increase in carriage speed results in reducing the ride quality. 

 

 

5 Conclusions 
 

The paper presents a novel bogie design for a high-speed train. The bogie comprises 

two subunits connected by diagonal linkages and has a three-stage suspension 

system, where an extra connection between the carriage and wheelset has been 

introduced. Another advantage of the double-wheelset bogie is its suitability for 

tracks with higher curvatures, where regular bogies cannot be used. The numerical 

simulations of 37 equations of motion, describing the train-bogie-wheel dynamics 

and its interaction with a track, have been used to find the optimal set of parameters 

of the bogie. The train vibrations have been excited by surface roughness of the rails 

that has been modeled as a random process with a given spectral density. Optimal 

parameters of the bogie has numerically been obtained and enabled the bogie safely 

travel with no excessive oscillations at speed up to 432km/h.  
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