Accepted Manuscript

Title: Rapid combustion synthesis of Cu$_2$Y$_2$O$_5$ as a precursor for CuYO$_2$ delafossite

Authors: Andrei V. Racu, Radu Baies, Srinivas R. Popuri, Mihai-Cosmin Pascariu, Mircea Niculescu, Radu Banica

PII: S2352-4928(17)30349-5
DOI: https://doi.org/10.1016/j.mtcomm.2018.01.010
Reference: MTCOMM 269

To appear in:

Received date: 5-1-2018
Accepted date: 11-1-2018

Please cite this article as: Andrei V. Racu, Radu Baies, Srinivas R. Popuri, Mihai-Cosmin Pascariu, Mircea Niculescu, Radu Banica, Rapid combustion synthesis of Cu$_2$Y$_2$O$_5$ as a precursor for CuYO$_2$ delafossite, Materials Today Communications https://doi.org/10.1016/j.mtcomm.2018.01.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Rapid combustion synthesis of Cu$_2$Y$_2$O$_5$ as a precursor for CuYO$_2$ delafossite

Andrei V. Racua,b, Radu Baiesa,c, Srinivas R. Popurid, Mihai-Cosmin Pascariua,e, Mircea Niculescuc, Radu Banicaa,c,*

aNational Institute of Research & Development for Electrochemistry and Condensed Matter – INCEMC Timisoara, 144 Dr. Aurel Păunescu-Podeanu, RO-300569 Timisoara, Romania

bInstitute of Applied Physics of the Academy of Sciences of Moldova, 5 Academiei, MD-2028 Chisinau, Moldova

cUniversity Politehnica Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Pârvan Blvd., RO-300223 Timisoara, Romania

dInstitute of Chemical Sciences and Centre for Advanced Energy Storage and Recovery, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK

e“Vasile Goldis” Western University of Arad, Faculty of Pharmacy, 86 Liviu Rebreanu, RO-310414 Arad, Romania

* Corresponding author, E-mail address: radu.banica@yahoo.com (R. Banica).

Graphical Abstract
Highlights

- A simple, rapid and energy saving combustion synthesis of Cu$_2$Y$_2$O$_5$ microcrystals.
- Short combustion time < 1 s ensures the obtaining of a reactive precursor mixture.
- The liquid phase combustion ensures a good homogeneity of precursors.
- The optimal annealing time at 1000 °C for pure phase Cu$_2$Y$_2$O$_5$ is around 5 minutes.
- The vacuum HT-XRD study reveals the conversion of Cu$_2$Y$_2$O$_5$ into CuYO$_2$ delafossite.

ABSTRACT

A rapid synthesis method of Cu$_2$Y$_2$O$_5$ micropowders, which takes around 10 minutes, is reported for the first time. This fast procedure, achieved by combining a nitrate/glycerol auto-combustion and an annealing step, constitutes an important improvement over the conventional solid-state reaction methods, which usually require several hours. The analysis of products was performed using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, scanning transmission electron microscopy, Fourier transform Raman spectroscopy and diffuse reflectance spectroscopy. The optical band gap of Cu$_2$Y$_2$O$_5$, estimated using the Tauc plot, was found to be 2.58 eV. The high-
temperature X-ray diffraction study, which was performed in a vacuum, confirmed the conversion of the Cu$_2$Y$_2$O$_5$ phase to a mixture of CuYO$_2$ delafossite and Y$_2$O$_3$. Thus, the overall time for obtaining CuYO$_2$, which is a well-known transparent conducting oxide (TCO), can be reduced to under 1 hour.

Keywords:
Auto-combustion reaction
Short annealing
Micropowder
Transparent conducting oxide
High-temperature XRD

1. Introduction

Copper-based ternary oxides, such as CuIIMIII$_2$O$_5$ and CuIMIIIO$_2$ delafossites, have gained tremendous interest due to their great potential in several important technologies, including superconducting compounds in the Cu-M-Ba-O system [1] and p-type transparent conducting oxides (TCO), like CuYO$_2$ [2-4]. K.T. Jacob *et al.* and G.M. Kale *et al.* have made significant contributions to the studies regarding the synthesis of compounds in the Cu-M-O system, establishing the phase relations, the decomposition temperatures and the correlation of thermodynamic properties with the ionic radius of the trivalent rare-earth cations for such compounds [1,5-9]. The Gibbs free energies of formation and the phase equilibria between Cu$_2$Y$_2$O$_5$ and CuYO$_2$ have also been investigated [10,11]. The crystalline structure of Cu$_2$M$_2$O$_5$ compounds was identified to belong to the orthorhombic system with the space group $P2_1nb$, consisting of an orthorhombic framework of MO$_6$ polyhedra, with the
copper ions being surrounded by a highly deformed octahedron composed of oxygen ions [12,13].

Cu₂Y₂O₅ is a less studied compound, due to its modest direct applications. Some studies on its magnetic [13-16,17], thermal [18,19] and optical [20,21] properties have been performed, which may lead to photocatalytic [22,23] and antibacterial coatings [24,25] applications. However, its most noticeable use during the last decade was as a precursor for the synthesis of CuYO₂ delafossite [26-29], which was mentioned for the first time by M. Kato et al. in 1983 [30]. The established method for synthesizing Cu₂Y₂O₅ powders involves a solid state reaction, performed by heating copper and yttrium oxides at elevated temperatures, between 800 and 1200 °C [26,28,31]. The total synthesis time, required for the formation of the pure phase, is of the order of several hours, i.e. 3 h [28], 5 h [31], 6 h [25] or 24 h [26]. On the other hand, the wet-chemical synthesis methods, such as auto-combustion, co-precipitation, sol-gel, hydrothermal and solvothermal synthesis, have proven to be more effective for obtaining pure-phase materials, because they require a lower reaction temperature and duration.

In order to reduce the overall time and energy consumption for obtaining microcrystalline Cu₂Y₂O₅, we have developed a novel method which reduces the synthesis time from a few hours to 10 minutes. A subsequent annealing study, which confirmed the rapid conversion of Cu₂Y₂O₅ to a mixture of CuYO₂ delafossite and Y₂O₃, was performed and is also reported in this paper.

2. Experimental

2.1. Rapid synthesis of Cu₂Y₂O₅
Analytical grade metal nitrates and methanol were purchased from Sigma-Aldrich, while glycerol was purchased from Chimreactiv (Romania). The synthesis started with the preparation of a 1.79 mol L$^{-1}$ glycerol solution, using methanol as solvent. In the first step (Fig. 1), stoichiometric amounts of Y(NO$_3$)$_3$·6H$_2$O and Cu(NO$_3$)$_2$·3H$_2$O were dissolved in 5.0 mL of glycerol solution under continuous stirring, after which the obtained deep blue solution was heated to reach the ignition temperature (128 °C). In the second step, the powdery product, obtained after the liquid’s combustion, was placed in alumina crucibles and heated in air at temperatures between 800 and 1000 °C for 5, 10 or 30 minutes. The crucibles were directly introduced into the furnace, which was preheated at the working temperature. Following the annealing, the crucibles were cooled to room temperature in 5-10 min. The thus-prepared powder samples were used for further characterization and for vacuum decomposition to CuYO$_2$ in a third step.

2.2. Analytical methods

The auto-ignition temperature was determined using a PC interfaced PCE-892 thermometer with a K-type thermocouple. The phase purity of the as-synthesized powders was investigated with a X’Pert PRO X-ray powder diffractometer, by using Ni-filtered Cu Kα radiation (λ = 1.54 Å) and a 4 h/sample measurement time (0.013° 20 step, time per step: 445.39 s). Profile matching to the XRD pattern was performed using the pseudo-Voigt Axial divergence asymmetry profile function in the FullProf Suite. The average crystallite sizes (L) of Cu$_2$Y$_2$O$_5$ powders were estimated using the Debye-Scherrer equation; the line broadening of the diffractometer was measured using a polycrystalline silicon standard. Also, the CuYO$_2$ phase formation from
Cu$_2$Y$_2$O$_5$ was studied using the in-situ high-temperature XRD technique, in the 400-1000 °C domain, with a 100 °C step and a 10 min/acquisition measurement time.

The Fourier transform Raman data were collected with a SpectraPro–2500i spectrometer, using a 532 nm excitation wavelength.

The diffuse reflectance spectroscopy (DRS) data were acquired using a Lambda 950 UV/VIS/NIR spectrophotometer, with a 150 mm integrating sphere (Spectralon was used as the reflectance reference).

Scanning electron microscopy (SEM) images were acquired using a FEI Inspect S microscope while scanning transmission electron microscopy (STEM) and high-resolution transmission electron microscopy (HRTEM) micrographs were obtained using a Titan G2 80-200.

3. Results and discussion

3.1. Cu$_2$Y$_2$O$_5$ micropowder

3.1.1. Formation mechanism

The synthesis of Cu$_2$Y$_2$O$_5$ was achieved through the auto-combustion of a mixture consisting of yttrium and copper nitrates in a glycerol/methanol solution, followed by an additional thermal treatment (see section 2.1 and Fig. 1).

The XRD patterns of the as-obtained and annealed (at various temperatures) powders are shown in Fig. 2. The post-combustion reaction product consists of a mixture of Y$_2$O$_3$, Cu$_2$O, and traces of Cu.
The combustion process for the metal nitrates/glycerol mixture is represented in Fig. 3. At first, the methanol vaporizes, after which a quantity of water from the hydrated metal salts is lost as well. During these processes, the solution viscosity increases and the color of the solution changes from deep blue to greenish-blue. Foaming is observed near the ignition point. The combustion reaction, which starts at 128 °C, is accompanied by a flame.

Assuming that enough dioxygen would be present in the system during the reaction, the glycerol combustion could be represented according to the following equations:

\[
\begin{align*}
3\text{CO}_2 + 14\text{e}^- + 14\text{H}^+ & \rightleftharpoons \text{C}_3\text{H}_8\text{O}_3 + 3\text{H}_2\text{O} \quad \text{(Equation 1)} \\
\text{NO}_3^- + 3\text{e}^- + 4\text{H}^+ & \rightleftharpoons \text{NO} + 2\text{H}_2\text{O} \quad \text{(Equation 2)} \\
\text{O}_2 + 4\text{e}^- + 4\text{H}^+ & \rightleftharpoons 2\text{H}_2\text{O} \quad \text{(Equation 3)} \\
\end{align*}
\]

\[
\begin{align*}
\text{C}_3\text{H}_8\text{O}_3 + 2\text{NO}_3^- + 2\text{O}_2 + 2\text{H}^+ & \rightarrow 3\text{CO}_2 + 2\text{NO} + 5\text{H}_2\text{O} \quad \text{(Equation 4)} \\
2\text{NO} + \text{O}_2 & \rightarrow 2\text{NO}_2 \quad \text{(Equation 5)} \\
\end{align*}
\]

In our case, most of the oxygen required for combustion is released during the decomposition of yttrium and copper nitrates, so the overall reaction between the nitrates and glycerol can be written as:

\[
\begin{align*}
14\text{Y(NO}_3)_3 \cdot 6\text{H}_2\text{O} + 14\text{Cu(NO}_3)_2 \cdot 3\text{H}_2\text{O} + 25\text{C}_3\text{H}_8\text{O}_3 + 70\text{O}_2 & \rightarrow \\
7\text{Cu}_2\text{Y}_2\text{O}_5 + 70\text{NO}_2 + 75\text{CO}_2 + 226\text{H}_2\text{O} \quad \text{(Equation 6)} \\
\end{align*}
\]

A part of the hydration water from the metal nitrates vaporizes before reaching the ignition temperature. Afterwards, the decomposition of copper and yttrium nitrates occurs at different temperatures. As seen from literature, the Y₂O₃ formation by thermal decomposition
of $\text{Y(NO}_3\text{)}_3\cdot 6\text{H}_2\text{O}$ takes place in nine stages [32]. The most endothermic processes take place at temperatures between 300 and 500 °C and are associated with the loss of hydration water. The Y_2O_3 compound is formed only at temperatures higher than 450 °C, according to the chemical reaction’s equation: $2\text{Y}_4\text{O}_5(\text{NO}_3)_2 \rightarrow 4\text{Y}_2\text{O}_3 + 4\text{NO}_2 + \text{O}_2$ [32].

If we use a stoichiometric mixture of nitrates and glycerol at temperatures lower than 450 °C, the reducing conditions are present in the system. Due to this, the reduction of Cu^{II} to Cu^{I}, followed by Cu^{0}, occurs, as noticed from the XRD pattern of the post-combustion mixture (Fig. 2). This means that a part of the oxygen released during the nitrates’ (i.e. $\text{Y}_4\text{O}_4(\text{NO}_3)_4$ and $\text{Y}_4\text{O}_5(\text{NO}_3)_2$) decomposition [32] does not react with the fuel. According to Equation 6, 53 moles of gases are released for each mole of $\text{Cu}_2\text{Y}_2\text{O}_5$. This high volume of gases hinders the access of oxygen from the ambient air. In this way, the reoxidation of metallic Cu and of Cu_2O to CuO is also hindered. As a result of the combustion reaction, the formation of $\text{Cu}_2\text{Y}_2\text{O}_5$ does not take place directly, due to the very short time (under one second) of precursors’ exposure to elevated temperatures (Fig. 3). In order to compensate for this, we performed a subsequent thermal treatment on the obtained foam mixture.

At high temperatures, both Cu_2O and Cu oxidize to CuO, which further reacts with Y_2O_3 in an oxidizing atmosphere to form $\text{Cu}_2\text{Y}_2\text{O}_5$ [14]. From the change in the Gibbs free energy, corresponding to the reaction between Y_2O_3 and CuO, it is possible to conclude that a spontaneous reaction only occurs at temperatures higher than 673 °C [10]. It was also observed that orthorhombic $\text{Cu}_2\text{Y}_2\text{O}_5$ is present as a minority phase in the mixture with cubic Y_2O_3 and CuO at 700 °C [33].

Because of the low reaction rate at 700 °C, the annealing of the reaction mixture was performed at 800 °C and 900 °C for 30 minutes and, respectively, at 900 °C and 1000 °C for 5 and 10 minutes. After annealing the post-combustion mixture at 800 °C for 30 minutes, the XRD pattern shows the two phases corresponding to $\text{Cu}_2\text{Y}_2\text{O}_5$ and Y_2O_3, indicating an
incomplete reaction (Fig. 2, marked with a black arrow). By increasing the annealing temperature to 900 °C, after 5 minutes, the Y₂O₃ concentration is reduced (Fig. 2, gray arrow). Traces of Y₂O₃ can be seen in the XRD pattern even after increasing the annealing time to 30 minutes at 900 °C (Fig. 2, light gray arrow). In order to obtain the pure phase material, the temperature was further increased to 1000 °C and the annealing time was reduced to 10 or 5 minutes. The latter annealing parameters were found to be the optimal conditions for obtaining Cu₂Y₂O₅ as a pure phase.

3.1.2 Structural studies

At room temperature, all XRD reflections of the synthesized Cu₂Y₂O₅ closely match with the ones from ICDD file 01-83-0341. No traces of other phases corresponding to any yttrium or copper oxides were detected. The crystal structure was refined in order to determine the lattice parameters, the XRD pattern of Cu₂Y₂O₅ prepared at 1000 °C for 5 minutes being analyzed with profile matching (Fig. 4). All diffraction reflections were indexed according to the orthorhombic phase of Cu₂Y₂O₅ with space group Pna21 (33), with lattice parameters \(a = 10.8006(1) \text{ Å}, b = 3.4962(1) \text{ Å}, c = 12.4539(1) \text{ Å}\) and \(V = 470.282(8) \text{ Å}^3\).

The average crystallite sizes \(L\) of Cu₂Y₂O₅ powders were estimated using the Debye-Scherrer equation,

\[
L = \frac{K \lambda}{\beta \cos \theta}
\]

(Equation 7)

where \(K\) is a constant related to the crystallite shape and taken as 0.9 (assuming that the crystallites are spherical in shape), \(\lambda\) is the X-ray wavelength, \(\beta\) is the line broadening of the peak at half of the maximum intensity (FWHM) after subtracting the instrumental line broadening, and \(\theta\) is the Bragg angle. For the average crystallite size estimation, the XRD
peak at 2θ=31.287 degrees (the (211) Bragg reflection) was used. The calculated average crystallite size of Cu$_2$Y$_2$O$_5$ particles obtained at 800 °C/30 min, 900 °C/5 min, 900 °C/30 min and 1000 °C/5 min are 111, 109, 129 and 180 nm, respectively. This shows that an increase in the reaction temperature or duration leads to an enhancement in the crystallites’ sizes.

3.1.3. Morphological studies

The morphology images of the Cu$_2$Y$_2$O$_5$ product, obtained at 1000 °C after 5 minutes of thermal treatment, shows microparticles having a foam aspect (Fig. 5a). Due to the high-temperature combustion reaction, individual microcrystals become attached to each other, forming aggregates. An interplanar distance of about 4.08 nm was measured using HRTEM for ten atomic layers, as shown in Fig. 5b. This corresponds to the (202) crystallographic plane of Cu$_2$Y$_2$O$_5$. STEM images, showing agglomerations of Cu$_2$Y$_2$O$_5$ particles, are presented at two magnification in Fig. 6. Some of these particles have sizes close to those estimated with the Scherrer equation for single crystallites of the same compound, around 180 nm, and are thus probably composed of a single crystallite.

3.1.4. Optical properties

The phase purity of Cu$_2$Y$_2$O$_5$ was also investigated using Fourier transform Raman spectroscopy. A typical ambient temperature Raman spectrum of a sample (1000 °C/5 min variant) is shown in Fig. 7. The Raman spectrum shows several sharp peaks corresponding to the lattice vibrations. The predominant Raman lines, located around 157, 173, 199, 210, 241, 264, 302, 328, 354, 393, 515, 562 and 586 cm$^{-1}$, are in agreement with the values reported in
literature [31]. The Raman spectroscopy also confirms the phase purity of Cu$_2$Y$_2$O$_5$, as there is no trace of Y$_2$O$_3$ (band at 376 cm$^{-1}$), which is in agreement with the XRD data.

The optical properties of Cu$_2$Y$_2$O$_5$ were also investigated using DRS (Fig. 8). The bluish-green color of the samples, characteristic for compounds of this type, is due to the crystal field splitting of Cu$^{2+}$ d-orbitals and the 2T$_{2g} \leftrightarrow ^{2}E_{g}$ electronic transition [20]. The broad peak in the 350–600 nm spectral range, with the maximum at 498 nm, shows a spectral shape close to the one already reported [20,22]. In order to estimate the optical band gap, the Tauc plot, $(F(R)h\nu)^{2/n}$ vs $h\nu$, was used, in which $F(R)$ is the Kubelka-Munk absorbance, $h\nu$ is the photon energy, and $n = 1$ for allowed direct optical transitions. The optical band gap (E_g) value was taken at the intersection point of the traced tangent and the horizontal $h\nu$ axis. As shown in Fig. 8 (inset), in the case of Cu$_2$Y$_2$O$_5$ prepared at 1000 °C for 5 min, the direct band gap is estimated to be 2.58 eV. The 0.10 eV deviation from the already reported bandgap value of 2.48 eV for Cu$_2$Y$_2$O$_5$ powder material [22] can be attributed to the different method of estimation used; the well-established Tauc plot for band gap estimations, which we have used in this paper, is generally known to give more accurate results.

3.2. CuYO$_2$ phase formation

Obtaining Cu$_2$Y$_2$O$_5$ is an important intermediate step in the formation of CuYO$_2$ delafossite [26,30]. Therefore a high-temperature XRD study on the obtained Cu$_2$Y$_2$O$_5$ powders was performed in order to identify favorable synthesis conditions and time for preparation of CuYO$_2$.

In spite of an earlier study regarding the CuYO$_2$ formation by annealing of Cu$_2$Y$_2$O$_5$ at 1020°C in air [34], the recent studies reveal that Cu$_2$Y$_2$O$_5$ decomposes into Y$_2$O$_3$, Cu$_2$O and CuO at 1100 °C in air, without forming the CuYO$_2$ phase [28]. This is attributed to the low
thermodynamic driving force involved in the formation of CuYO$_2$. As a consequence, an inert atmosphere would be a necessary condition for delafossite phase formation, in order to avoid its decomposition. The studied phase transformation conditions included a 10$^{-2}$ mbar vacuum and a 10 min/scan exposure time at temperatures in the 400-1000 °C domain (Fig. 9). We have observed that Cu$_2$Y$_2$O$_5$ is stable up to 500 °C and that the phase conversion of Cu$_2$Y$_2$O$_5$ starts above this temperature. Up to 700 °C, a phase coexistence of Cu$_2$Y$_2$O$_5$, CuYO$_2$ and Y$_2$O$_3$ is noticed. Above 800 °C, only traces of Cu$_2$Y$_2$O$_5$ can be observed, which indicates the complete transformation of Cu$_2$Y$_2$O$_5$ into CuYO$_2$ and Y$_2$O$_3$ phases. These results suggest that it is possible to obtain CuYO$_2$ delafossite in vacuum above 700 °C under 50 min. However, further investigations to obtain a pure CuYO$_2$ phase are necessary. Also some literature data confirms that the decomposition of Cu$_2$Y$_2$O$_5$ to CuYO$_2$ in argon atmosphere at 900 °C can be achieved in around 10 min [21].

4. Conclusions

The efficiency of our rapid two-step technique for the production of Cu$_2$Y$_2$O$_5$ microcrystals in 10 minutes was demonstrated. The first step of this technique, namely the auto-combustion synthesis, leads to the formation of a mixture of Y$_2$O$_3$, Cu$_2$O, and Cu. The second step consists in the annealing of the post-combustion product at 1000 °C for 5 minutes. In this way, the oxidation of Cu$_2$O and Cu leads to the formation of CuO, which reacts with Y$_2$O$_3$, allowing for the formation of pure phase Cu$_2$Y$_2$O$_5$. The crystallites’ dimensions estimated using the Scherrer equation were around 180 nm for the Cu$_2$Y$_2$O$_5$ microparticles, which were confirmed by STEM. XRD data, Fourier transform Raman spectroscopy and HRTEM confirmed the purity of the synthesized materials. Using the Tauc plot, the value of the band gap for Cu$_2$Y$_2$O$_5$ was estimated to be 2.58 eV. The high-
temperature X-ray diffraction study, performed in a vacuum in the third step, confirmed the
\(\text{Cu}_2\text{Y}_2\text{O}_5 \) phase conversion to a mixture of \(\text{CuYO}_2 \) delafossite and \(\text{Y}_2\text{O}_3 \). This result allows
the overall time required for synthesis of delafossite to be reduced to under 1 hour.

Acknowledgements

This work was partially supported by the grant POSDRU/159/1.5/S/137070 (2014) of
the Ministry of National Education, Romania, co-financed by the European Social Fund –
Investing in People, within the Sectoral Operational Programme Human Resources
Development 2007-2013. We thank Dr. Olga Iliasenco and Daniela Drasovean for their help
in drafting the paper.
References

Figure captions

Fig. 1. General synthetic procedure for obtaining Cu$_2$Y$_2$O$_5$.

Fig. 2. XRD patterns of the post-combustion mixture and of the samples obtained at various annealing temperatures and durations.
Fig. 3. Variation of the reacting system’s temperature during the combustion of copper and yttrium nitrates dissolved in glycerol/methanol.

Fig. 4. Profile matching to the XRD pattern of \(\text{Cu}_2\text{Y}_2\text{O}_5 \) synthesized at 1000 °C/5 min; the observed (red points), calculated (black solid line), Bragg positions (green bars) and
difference curve (bottom blue line) are shown; the conventional reliability factors for profile matching are $R_p = 12.1\%$, $R_{wp} = 9.50\%$ and $\chi^2 = 1.787$.

Fig. 5. SEM (a) and HRTEM (b) images of Cu$_2$Y$_2$O$_5$ annealed at 1000 °C for 5 min.

Fig. 6. STEM images of Cu$_2$Y$_2$O$_5$ annealed at 1000 °C for 5 min.
Fig. 7. Fourier transform Raman spectrum of Cu₂Y₂Os obtained at 1000 °C/5 min.

Fig. 8. DRS curve for Cu₂Y₂Os (inset: determination of the optical band gap of Cu₂Y₂Os).
Fig. 9. High-temperature XRD patterns for decomposition of Cu$_2$Y$_2$O$_5$ in a vacuum (10$^{-2}$ mbar).