


The involvement of control system in the industry can mainly be found in speed 
control and position control. In position control system, mechanical position usually is the 
system output for an arm or a pointer. The controller performance highly affects the 
accuracy of arm/pointer system output. The position control system applications can be 
commonly found in automated systems such as solar tracking system and robotic system. 
Servomotor is usually used as the actuator for position control system. Servomotor is a type 
of direct current (DC) motor that is capable of precise control for velocity and acceleration 
as well as angular and linear positions. Many types of controllers have been used in the 
application of position control systems. These controllers usually include the use of fuzzy 
logic, fractional order, finite control with model predictive controllers as well as a proposed 
controller that combines the characteristics of μ-synthesis and neural network [1].  

 
 The proposed controller is a modified crisp fuzzy logic controller where modifications 
were done on both the input and the output of the controller. The input of the controller 
uses crisp rectangular adjacent non-overlapping membership function which is distributed 
along the discourse universe whereas modification for the output was done on the 
computation method [1]. The controller showed acceptable performance and shorter 
processing time than conventional fuzzy logic controller [2]. 
 

Another proposed controller is based on finite control set model predictive control 
for the application of permanent magnet synchronous motor (PMSM). This controller 
predicts the future behavior of the actuator and perform action that is chosen from a model 
set [3]. Other than that, many also applied fractional order calculus in motor position 
control which uses a fractional order PI controller and compared to integer order PI 
controller. The fractional order controller contains two extra variables which allow more 
flexible and precise tuning in the applications. Tt can be concluded that fractional order PI 
controller experience less overshoot and lower maximum percentage of error than 
conventional PI controller [4]. Further expanded application of fractional order added with 
differential evolution algorithm is also introduced in PI controllers. This method adds a 
self-tuning ability to the controller for the application of voice coil motor (VCM). Result 
shows that the proposed controller experience lower settling time, tracking error as well as 
lower maximum overshoot as compared to conventional PI controller and standalone 
fractional order PI controller [5].  

 
In this paper, Proportional-integral-derivatives (PID) controller is chosen due to its 

simplicity in applications [6]. By tuning the controller’s three individual components, 
overshoots, steady-state errors, rise times and settling times of the system can be altered 
easily. The limitation of a conventional PID controller is often caused by the limitation of 
the actuator being used instead of the controller itself. When the output of the controller 
exceeds the limit of the actuator, the controller begins to lose the ability to control the 
system. Example can be shown through the flushing mechanism. The system controls the 
opening of the valve to limit the flow rate of the water depending on the tank level. 
However, if the error continues to grow even after the valve is fully open, the flow rate of 
the water will not continue to increase due to the limitation of the valve. This condition is 
known as the integral windup phenomenon, where the integral component continues to 
offset the error even when the output remains the same. 

 
Over the years, several anti-windup schemes had been proposed to eliminate the 

integral windup phenomenon and to increase the efficiency of PID controller. These 
schemes include the Conditional Integration (CI), Tracking Back Calculation (TBC), 
Integral State Prediction (ISP), pole placement method and gain scheduling method.  
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In this paper, Proportional-integral-derivatives (PID) controller is chosen due to its 

simplicity in applications [6]. By tuning the controller’s three individual components, 
overshoots, steady-state errors, rise times and settling times of the system can be altered 
easily. The limitation of a conventional PID controller is often caused by the limitation of 
the actuator being used instead of the controller itself. When the output of the controller 
exceeds the limit of the actuator, the controller begins to lose the ability to control the 
system. Example can be shown through the flushing mechanism. The system controls the 
opening of the valve to limit the flow rate of the water depending on the tank level. 
However, if the error continues to grow even after the valve is fully open, the flow rate of 
the water will not continue to increase due to the limitation of the valve. This condition is 
known as the integral windup phenomenon, where the integral component continues to 
offset the error even when the output remains the same. 

 
Over the years, several anti-windup schemes had been proposed to eliminate the 

integral windup phenomenon and to increase the efficiency of PID controller. These 
schemes include the Conditional Integration (CI), Tracking Back Calculation (TBC), 
Integral State Prediction (ISP), pole placement method and gain scheduling method.  

 Conditional Integration is one of the most common schemes and it function by 
switching off the integral component during saturation state then turns it back on when the 
controller enters a linear state again. Tracking Back Calculation measures the difference 
between the output signal and the non-saturation state signal before feeding the error back 
to obtain higher accuracy. Another scheme is the Integral State Prediction (ISP). This 
scheme predicts the steady-state value and feed the value back to the integral state when the 
controller re-enters linear state [7].  
 
 Recently, both pole placement and gain scheduling methods were introduced in PID. 
The desired plant is first transformed into a type-1 plant as type-0 plant will always have 
error. Pole placement method is then used for the derivation of the controller gain [8]. 
Lastly, gain scheduling proposed the use of various gains and constants for different 
controller states for higher accuracy [9].  
  

This paper uses a new type of controller known as Steady-state Integral 
Proportional Integral Controller (SIPIC) scheme for the application of position control 
system. Steady-state Integral Proportional Integral Controller (SIPIC) scheme is also 
another proposed controller that can overcome integral windup. It does that by having a 
separate closed loop feedback with the steady state integral value as an input. This 
constantly leads the integral control towards the steady state integral value[7]. It was 
mentioned earlier that different component of PID controller will have different effect on 
the performance and for PI controller, it will often have a short settling time with overshoot 
performance. SIPIC scheme made it possible to have a controller with short settling time 
with no overshoot performance due to its tuning decoupling ability. This ability allows the 
proportional gain (Kp) and integral gain (Ki) to be tune separately. 

 
SIPIC has shown ideal performance with little overshoot while maintaining short 

settling time on a DC motor speed control application[7]. However, no work had been done 
on applying the SIPIC scheme on a DC motor position control application. Therefore, this 
research aims to validate the usage of proposed SIPIC controller in the application of motor 
position control. The objectives of this research are as below:  

1. To develop a new anti-windup PI controller that is suitable for motor position 
control.  

2. To validate the stability and performance of the new PI controller by studying the 
overshoot, steady-state error and settling time of the controller. 

3. To investigate and determine the range of gain that will maximize the performance 
of the PI controller for motor position control. 
 

2. RESEARCH METHODOLOGY 
 

2.1 Experimental Setup 
 

 Hardware testing was done to verify the proposed SIPIC controller. Comparison was 
done between SIPIC controller and conventional PI controller. The performance of the 
controllers is evaluated based on theirs steady-state error, overshoot, rise time as well as 
settling time. SCILAB and SCICOSLAB software were used to carry out experiment and 
data analysis for both the controllers. Figure below shows the equipment used for 
experimental testing purpose.  
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Fig 1. Experimental setup 

 
2.2 SIPIC 

 
This section focuses on the SIPIC controller and its characteristics. Based on 

previous work done by [7], Eq. 1 shows the generic template where SIPIC was developed 

from. , , , and  represents Laplace form of integral state, integral during 
steady state, function in Laplace form, Laplace domain and non-negative integer 

respectively.  and  are constants. Eq. 2 below shows integral component of SIPIC after 
various substitutions and derivations while Eq. 3 shows the error equation of SIPIC.  

 
                                              (1) 
 

     (2) 

 

    (3) 

 
2.3 Input Reference 

 
Based on the previous work done on SIPIC controller, the input reference was 

modified for the application of motor position control. Fig. 2 shows the block diagram for 
motor position control. From this, Eq. 4 was derived, and Eq. 5 shows the final input 
reference for motor position control for SIPIC controller. Fig. 3 shows the SIPIC controller 
block diagram for experimental setup whereas Table 1 shows the parameter used to obtain 
the input reference.  
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Fig. 2. Motor position control block diagram 

 

     (4) 

 (5) 

 
 

 
Fig. 3. SIPIC experimental setup block diagram 
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Table 1. Parameters for experiment [7] 
Characteristics Values 

Viscous damping coefficient, B 2.12 x 10-4 kg m2/s 
Inductance, L 0.005 H 

Moment of inertia of motor, J 2.14 x 10-5 kg m2 

Torque constant, KT 0.09 Nm/A 
Back-emf constant, Km 0.09 Nm/A 

Efficiency, ƞ 0.8 

Resistance, R 7.8 Ω 
Moment of inertia of mild steel black plating 8.63 x 10-5 kgm2 

 
 
 
3. Results and Discussions 

 
This section shows the results obtained from hardware testing. Necessary 

information was obtained from the extracted data and analysis was done to verify the 
performance of each controller. Comparison was done between the two controllers to verify 
the proposed SIPIC controller for motor position control under no load condition and under 
load condition.  

 
Two different step inputs were used for testing. For the first step input, the 

controller travels from 0˚ to 90˚ and for the second input, the pointer travel from 270˚ to 
90˚. To put this into real life application, the first input is similar as to when changing 
steering direction of a vehicle while travelling in straight line while the second input is 
similar as to changing the direction of a vehicle from left directly to right. The stability in 
each case is different.  

 
All the data obtained was tabulated below from table 2 to table 4. The table 

indicates  
 

3.1 No Load 
3.1.1 0 to 90 

Table 2. Results for no load condition first input 
    Overshoot Rise Time Settling Time 

Kp Ki PI SIPIC PI SIPIC PI  SIPIC 
1 1 0.132 0.05 0.078 0.086 1.737 2.34 
1 5 0.452 0.21 0.064 0.091 0.504 0.671 
1 10 0.722 0.374 0.056 0.095 0.576 0.981 
1 15 0.949 0.487 0.05 0.094 0.93 0.762 
1 20 1.09 0.543 0.046 0.095 1.228 1.047 
2 1 0.251 0.204 0.04 0.042 0.156 0.632 
2 5 0.371 0.188 0.037 0.048 0.688 0.434 
2 10 0.521 0.295 0.035 0.055 0.175 0.333 
2 15 0.634 0.411 0.034 0.059 0.242 0.541 
2 20 0.663 0.502 0.034 0.061 0.239 0.486 
3 1 0.389 0.358 0.027 0.029 0.165 0.167 
3 5 0.452 0.242 0.027 0.033 0.161 0.352 
3 10 0.502 0.305 0.026 0.038 0.496 0.251 
3 15 0.524 0.367 0.026 0.043 0.396 0.233 
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3.1 No Load 
3.1.1 0 to 90 

Table 2. Results for no load condition first input 
    Overshoot Rise Time Settling Time 

Kp Ki PI SIPIC PI SIPIC PI  SIPIC 
1 1 0.132 0.05 0.078 0.086 1.737 2.34 
1 5 0.452 0.21 0.064 0.091 0.504 0.671 
1 10 0.722 0.374 0.056 0.095 0.576 0.981 
1 15 0.949 0.487 0.05 0.094 0.93 0.762 
1 20 1.09 0.543 0.046 0.095 1.228 1.047 
2 1 0.251 0.204 0.04 0.042 0.156 0.632 
2 5 0.371 0.188 0.037 0.048 0.688 0.434 
2 10 0.521 0.295 0.035 0.055 0.175 0.333 
2 15 0.634 0.411 0.034 0.059 0.242 0.541 
2 20 0.663 0.502 0.034 0.061 0.239 0.486 
3 1 0.389 0.358 0.027 0.029 0.165 0.167 
3 5 0.452 0.242 0.027 0.033 0.161 0.352 
3 10 0.502 0.305 0.026 0.038 0.496 0.251 
3 15 0.524 0.367 0.026 0.043 0.396 0.233 

3 20 0.638 0.44 0.025 0.045 0.328 0.394 
4 1 0.471 0.418 0.022 0.023 0.171 0.139 
4 5 0.506 0.308 0.022 0.026 0.392 0.311 
4 10 0.553 0.283 0.022 0.03 0.438 0.232 
4 15 0.565 0.352 0.022 0.033 0.369 0.197 
4 20 0.65 0.427 0.021 0.036 0.349 0.322 
5 1 0.515 0.471 0.021 0.021 0.172 0.165 
5 5 0.55 0.33 0.02 0.022 0.183 0.314 
5 10 0.59 0.286 0.02 0.024 0.187 0.223 
5 15 0.59 0.327 0.02 0.03 0.193 0.187 
5 20 0.619 0.396 0.019 0.03 0.19 0.172 
10 1 0.537 0.524 0.019 0.019 0.176 0.179 
10 5 0.55 0.474 0.019 0.019 0.183 0.287 
10 10 0.575 0.443 0.019 0.019 0.188 0.223 
10 15 0.597 0.43 0.019 0.019 0.191 0.178 
10 20 0.606 0.455 0.019 0.019 0.195 0.145 
15 1 0.543 0.521 0.019 0.019 0.178 0.154 
15 5 0.55 0.493 0.019 0.019 0.193 0.231 
15 10 0.553 0.458 0.019 0.019 0.204 0.201 
15 15 0.562 0.443 0.019 0.019 0.21 0.168 
15 20 0.581 0.449 0.019 0.019 0.209 0.144 
20 1 0.534 0.531 0.019 0.019 0.201 0.177 
20 5 0.543 0.506 0.019 0.019 0.197 0.168 
20 10 0.553 0.477 0.019 0.019 0.216 0.176 
20 15 0.556 0.462 0.019 0.019 0.225 0.154 
20 20 0.568 0.436 0.019 0.019 0.228 0.136 

 
 

 
Fig. 4. Performance graph when Kp = 1, Ki = 1 

Green: SIPIC Pink: PI 

Time 

R
adian 
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Fig 5. Performance graph when Kp = 1, Ki = 20 

 

 
Fig. 6. Performance graph when Kp = 20, Ki = 1 
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Fig. 6. Performance graph when Kp = 20, Ki = 1 

 
 

 
Fig. 7. Performance graph when Kp = 20, Ki = 20 

 
Table 2 above shows the performance of both controllers when Kp is 1 and Ki is 1, 

5, 10 and 15 respectively. As the integral gain increases, both controllers experience an 
increase in overshoot but SIPIC controller have a significantly lower overshoot especially 
at higher Ki value. Moving on to the rise time of the controllers, different pattern is seen in 
each controller. For PI controller, rise time decrease as the integral gain increase but for 
SIPIC, rise time increase alongside the integral gain. However, SIPIC shows higher rise 
time compared to PI controller. Lastly, the settling time of the controllers is compared. 
Under comparison, when both the gain is 1, SIPIC shows a higher settling time. When the 
integral gain is increased to 5, both controller experience a big drop in settling time but as 
the integral gain continue to increase, settling time gradually increase in PI controller but 
experience minor up and down changes in SIPIC controller.  

 
Next, Ki is kept at 1 and Kp is increased from 1 to 5, it is seen from results that the 

overshoot for both controllers increased significantly. Rise time and settling time decreases 
for both controller. Both controllers now experienced similar overshoot, rise time as well as 
settling time. As the integral value increases, PI controller experience slight increase in 
overshoot but SIPIC controller experience slight decrease in overshoot. The rise time of PI 
controller remain constant whereas SIPIC controller has slight increase in rise time when 
the integral gain increases. For settling time, PI controller experience slight increase. For 
SIPIC controller, when the Ki value is increase from 1 to 5, there is an increase in settling 
time but setting time experience a descent when the Ki value is further increased.  

 
The Kp value was then increased to 10.  The increased of Kp value causes the same 

effect to both controllers, increase in overshoot and settling time but decrease in rise time. 
SIPIC controller still has a lower overshoot than PI controller, similar settling time and both 
controller now have the same rise time. As the integral gain increase, overshoot for PI 
controller has a slight increase but a slight decrease is experienced by SIPIC controller. 
There are no changes in rise time for both controller as this is the lowest possible rise time 
due to hardware limitation. PI controller continue to experience slight increase in settling 
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time as Ki increases while settling time for SIPIC controller first increase then decreases, 
like where the Kp is 5.  

 
Lastly, Kp was increased to15. The rise time for both controllers is still 0.019s, 

same as before. The increase in Kp causes a slight increase in overshoot and settling time of 
PI controller but a slight decrease in overshoot and settling time of SIPIC controller. 
Increasing Ki value continue to cause slight increase in overshoot of PI controller but 
decrease in overshoot for SIPIC controller. Same pattern is also seen in settling time of both 
controller. The increase in Ki value results in increase of settling time for PI controller but 
for SIPIC controller, the settling time first increases then start to decrease when the Ki value 
is further increased from 5.  

 
Under no load condition first input, both controller shows very close performance. 

The proposed SIPIC controller have lower overshoot at all parameter as compared to 
conventional PI controller. SIPIC controller experiences higher rise time at low Kp value 
but both controller experience similar rise time when Kp value is further increased. 
Comparing the condition when both Kp and Ki is 15 as shown in Fig. 6, SIPIC controllers 
outperform PI controller by having a lower overshoot as well as lower settling time. This is 
because at higher Ki value, SIPIC controller experience decrease in both overshoot and 
settling time but PI controller experience increase in both components.  
 

3.1.2 270 to 90 
Table 3. Results for no load condition second input 

    Overshoot Rise Time Settling Time 

Kp Ki PI SIPIC PI SIPIC PI  SIPIC 
1 1 0.358 0.213 0.069 0.076 2.209 1.942 

1 5 0.986 0.468 0.061 0.089 0.584 0.647 

1 10 1.486 0.785 0.053 0.091 0.499 0.868 

1 15 1.756 0.967 0.049 0.095 1.223 1.137 

1 20 2.149 1.087 0.044 0.094 1.093 1.377 

2 1 0.433 0.427 0.036 0.039 0.191 1.302 

2 5 0.704 0.44 0.033 0.046 0.941 0.523 

2 10 0.983 0.619 0.034 0.055 0.612 0.337 

2 15 1.156 0.801 0.033 0.058 0.561 0.523 

2 20 1.285 1.002 0.032 0.06 0.448 0.702 

3 1 0.616 0.54 0.032 0.033 0.169 1.288 

3 5 0.769 0.531 0.031 0.035 1.023 0.515 

3 10 0.923 0.644 0.03 0.037 0.676 0.309 

3 15 1.055 0.776 0.03 0.042 0.528 0.419 

3 20 1.244 0.936 0.03 0.043 0.424 0.391 

4 1 0.669 0.631 0.031 0.031 0.216 1.005 

4 5 0.782 0.587 0.03 0.032 1.11 0.501 

4 10 0.901 0.682 0.03 0.033 0.857 0.318 

4 15 1.03 0.851 0.03 0.034 0.649 0.217 

4 20 1.15 0.952 0.03 0.036 0.552 0.333 
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time as Ki increases while settling time for SIPIC controller first increase then decreases, 
like where the Kp is 5.  

 
Lastly, Kp was increased to15. The rise time for both controllers is still 0.019s, 

same as before. The increase in Kp causes a slight increase in overshoot and settling time of 
PI controller but a slight decrease in overshoot and settling time of SIPIC controller. 
Increasing Ki value continue to cause slight increase in overshoot of PI controller but 
decrease in overshoot for SIPIC controller. Same pattern is also seen in settling time of both 
controller. The increase in Ki value results in increase of settling time for PI controller but 
for SIPIC controller, the settling time first increases then start to decrease when the Ki value 
is further increased from 5.  

 
Under no load condition first input, both controller shows very close performance. 

The proposed SIPIC controller have lower overshoot at all parameter as compared to 
conventional PI controller. SIPIC controller experiences higher rise time at low Kp value 
but both controller experience similar rise time when Kp value is further increased. 
Comparing the condition when both Kp and Ki is 15 as shown in Fig. 6, SIPIC controllers 
outperform PI controller by having a lower overshoot as well as lower settling time. This is 
because at higher Ki value, SIPIC controller experience decrease in both overshoot and 
settling time but PI controller experience increase in both components.  
 

3.1.2 270 to 90 
Table 3. Results for no load condition second input 

    Overshoot Rise Time Settling Time 

Kp Ki PI SIPIC PI SIPIC PI  SIPIC 
1 1 0.358 0.213 0.069 0.076 2.209 1.942 

1 5 0.986 0.468 0.061 0.089 0.584 0.647 

1 10 1.486 0.785 0.053 0.091 0.499 0.868 

1 15 1.756 0.967 0.049 0.095 1.223 1.137 

1 20 2.149 1.087 0.044 0.094 1.093 1.377 

2 1 0.433 0.427 0.036 0.039 0.191 1.302 

2 5 0.704 0.44 0.033 0.046 0.941 0.523 

2 10 0.983 0.619 0.034 0.055 0.612 0.337 

2 15 1.156 0.801 0.033 0.058 0.561 0.523 

2 20 1.285 1.002 0.032 0.06 0.448 0.702 

3 1 0.616 0.54 0.032 0.033 0.169 1.288 

3 5 0.769 0.531 0.031 0.035 1.023 0.515 

3 10 0.923 0.644 0.03 0.037 0.676 0.309 

3 15 1.055 0.776 0.03 0.042 0.528 0.419 

3 20 1.244 0.936 0.03 0.043 0.424 0.391 

4 1 0.669 0.631 0.031 0.031 0.216 1.005 

4 5 0.782 0.587 0.03 0.032 1.11 0.501 

4 10 0.901 0.682 0.03 0.033 0.857 0.318 

4 15 1.03 0.851 0.03 0.034 0.649 0.217 

4 20 1.15 0.952 0.03 0.036 0.552 0.333 

5 1 0.697 0.685 0.03 0.03 0.184 0.943 

5 5 0.782 0.672 0.03 0.03 1.212 0.485 

5 10 0.905 0.769 0.029 0.031 0.916 0.328 

5 15 0.964 0.873 0.029 0.03 0.721 0.223 

5 20 1.043 1.011 0.029 0.03 0.618 0.298 

10 1 0.682 0.682 0.029 0.03 0.196 0.496 

10 5 0.71 0.691 0.029 0.03 0.255 0.435 

10 10 0.776 0.741 0.029 0.03 0.98 0.307 

10 15 0.826 0.801 0.029 0.03 0.943 0.237 

10 20 0.864 0.892 0.029 0.03 0.864 0.185 

15 1 0.694 0.682 0.029 0.03 0.214 0.224 

15 5 0.704 0.688 0.029 0.03 0.223 0.36 

15 10 0.732 0.691 0.029 0.03 0.631 0.267 

15 15 0.769 0.713 0.029 0.03 0.935 0.219 

15 20 0.798 0.744 0.029 0.03 0.912 0.182 

20 1 0.691 0.691 0.029 0.03 0.219 0.199 

20 5 0.697 0.688 0.029 0.03 0.24 0.267 

20 10 0.719 0.704 0.029 0.03 0.291 0.235 

20 15 0.738 0.694 0.029 0.03 0.701 0.204 

20 20 0.769 0.716 0.029 0.03 0.866 0.174 

 

 
Fig. 8. Performance graph when Kp = 1, Ki = 1 
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Fig. 9. Performance graph when Kp = 1, Ki = 20 

 

 
Fig. 10. Performance graph when Kp = 20, Ki = 1 
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Fig. 9. Performance graph when Kp = 1, Ki = 20 

 

 
Fig. 10. Performance graph when Kp = 20, Ki = 1 

 
 

 
Fig. 11. Performance graph when Kp = 20, Ki = 20 

 
As shown in Fig. 6, when both value is 1, SIPIC controller has lower overshoot 

and settling time as compared to PI controller, but higher rise time. When the Ki value is 
increased, both controller experience an increase in overshoot but the increase in PI 
controller are far more significant. Rise time for PI controller decreases as the value of Ki 
increases but SIPIC controller experience higher rise time at higher Ki value. For settling 
time, both controller first experience a decrease before increasing again as Ki value is 
further increased. When Kp is 1 and Ki is 15, SIPIC controller performs slightly better by 
having lower overshoot and settling time but higher rise time as compared to PI controller.  

 
Moving on, Kp value was increased from 1 to 5. Compared to when Kp value is 1, 

both controller now have higher overshoot, lower rise time and lower settling time. As the 
value of Ki increases, both controller experience an increase in overshoot. The changes in 
rise time are insignificant in both controller. For settling time, SIPIC controller goes 
through a steady decrease in settling time but an increase then decrease in the PI controller. 
As the Ki value increases, the settling time of the SIPIC controller starts to be significantly 
lower than the PI controller.  

 
 When the Kp is further increased to 10 and 15, the rise time of both controllers remain 

the same as it is the lowest rise time possible. Both controller also experience minor 
changes in overshoot with SIPIC controller still having lower overshoot than PI controller. 
For settling time, SIPIC controller continue to show higher settling time than PI controller 
when the Ki value is small but SIPIC controller then outperform PI controller when the Ki 
value increases.  
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3.2 With Load 
 

3.2.1 0 to 90 
Table 4. Results for loading condition first input 

    Overshoot Rise Time Settling Time 
Kp Ki PI SIPIC PI SIPIC PI  SIPIC 

1 1 0.543 0.521 0.096 0.1 0.532 1.18 

1 5 1.121 0.697 0.083 0.097 1.314 1.423 

1 10 1.624 0.876 0.075 0.095 N/A 1.804 

1 15 N/A 0.923 0.068 0.09 N/A 2.012 

1 20 N/A 0.942 0.063 0.09 N/A 1.986 

2 1 0.81 0.697 0.063 0.064 1.595 0.667 

2 5 0.917 0.766 0.058 0.06 0.967 0.631 

2 10 1.165 0.854 0.054 0.061 1.157 0.957 

2 15 1.354 0.905 0.051 0.061 N/A 1.038 

2 20 1.476 0.945 0.049 0.06 N/A 1.449 

3 1 0.813 0.807 0.046 0.047 0.586 0.579 

3 5 0.958 0.848 0.044 0.047 0.736 0.609 

3 10 1.043 0.927 0.043 0.046 0.874 0.831 

3 15 1.212 0.952 0.043 0.046 1.413 0.963 

3 20 1.26 0.952 0.041 0.046 1.722 1.034 

4 1 0.917 0.886 0.039 0.04 0.626 0.615 

4 5 0.967 0.92 0.039 0.04 0.709 0.65 

4 10 1.052 0.955 0.037 0.039 0.824 0.642 

4 15 1.134 0.977 0.038 0.039 0.951 0.643 

4 20 1.256 1.005 0.036 0.039 1.044 0.912 

5 1 0.895 0.939 0.037 0.037 0.593 0.762 

5 5 0.961 0.971 0.039 0.037 0.718 0.65 

5 10 1.037 1.037 0.036 0.037 0.73 0.658 

5 15 1.106 1.065 0.036 0.037 0.815 0.667 

5 20 1.168 1.118 0.036 0.037 0.929 0.672 

10 1 0.889 0.92 0.035 0.035 0.652 0.664 

10 5 0.933 1.074 0.036 0.035 0.717 0.644 

10 10 0.974 1.209 0.035 0.035 0.791 0.68 

10 15 1.002 1.344 0.035 0.035 0.802 0.683 

10 20 1.043 1.426 0.035 0.035 0.799 0.858 

15 1 0.908 0.917 0.035 0.035 0.724 0.711 

15 5 0.92 1.046 0.035 0.035 0.772 0.73 

15 10 0.942 1.172 0.035 0.035 0.791 0.764 

15 15 0.958 1.25 0.035 0.035 0.792 0.789 
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4 1 0.917 0.886 0.039 0.04 0.626 0.615 

4 5 0.967 0.92 0.039 0.04 0.709 0.65 

4 10 1.052 0.955 0.037 0.039 0.824 0.642 

4 15 1.134 0.977 0.038 0.039 0.951 0.643 

4 20 1.256 1.005 0.036 0.039 1.044 0.912 

5 1 0.895 0.939 0.037 0.037 0.593 0.762 

5 5 0.961 0.971 0.039 0.037 0.718 0.65 

5 10 1.037 1.037 0.036 0.037 0.73 0.658 

5 15 1.106 1.065 0.036 0.037 0.815 0.667 

5 20 1.168 1.118 0.036 0.037 0.929 0.672 

10 1 0.889 0.92 0.035 0.035 0.652 0.664 

10 5 0.933 1.074 0.036 0.035 0.717 0.644 

10 10 0.974 1.209 0.035 0.035 0.791 0.68 
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15 20 0.989 1.319 0.035 0.035 0.898 0.964 

20 1 0.876 0.895 0.035 0.035 0.785 0.834 

20 5 0.908 0.999 0.035 0.035 0.869 0.833 

20 10 0.911 1.09 0.035 0.035 0.875 0.834 

20 15 0.952 1.178 0.035 0.035 0.883 0.876 

20 20 0.964 1.209 0.035 0.035 0.958 1.119 

 

 
Fig. 12. Performance graph when Kp = 1, Ki = 1 
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Fig. 13. Performance graph when Kp = 1, Ki = 20 

 

 
Fig. 14. Performance graph when Kp = 20, Ki = 1 
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Fig. 13. Performance graph when Kp = 1, Ki = 20 

 

 
Fig. 14. Performance graph when Kp = 20, Ki = 1 

 
 

 
Fig. 15. Performance graph when Kp = 20, Ki = 20 

 
Table 4 shows results of controller first input under loading condition. When both 

Kp and Ki is 1 as shown in Fig. 10, SIPIC controller showed lower overshoot, shorter rise 
time and settling time as compared to PI controller. As the Ki value increases, both 
controller experience an increase in overshoot and decrease in rise time. Both controller 
also experience an increase in the settling time of the controller but for PI, the settling time 
were unable to be determined because the controller have not settled in the given step time. 
When Kp is 1 and Ki is 15 as shown in Fig. 11, PI controller shows very high oscillation 
and the overshoot, rise time and settling time were all not able to be determined. SIPIC 
controller on the other hand, still showed a very stable performance. This proves that SIPIC 
controller is more stable than conventional PI controller.  

 
 As the Kp value is increases from 1 to 5, both controller experience higher overshoot 

but lower rise time. PI controller experienced slightly longer slightly time but SIPIC 
controller experienced shorter settling time. As the value of Ki increases, the overshoot for 
both controller increases and both controller showed similar overshoot. The difference in 
rise time of both controllers is insignificant while SIPIC controller shows shorter settling 
time as Ki increases.  

 
 The Kp value is increased to 10 with Ki value being 1, 5, 10 and 15 respectively. 

Compared to when Kp was 5, both controller experience slight decrease in overshoot and 
rise time. PI controller has a longer settling time than before while SIPIC controller now 
has shorter settling time. As Ki increases, overshoot for both controllers increases while PI 
controller outperform SIPIC controller by having lower overshoot. Both controller shows 
similar rise time as this is the lowest possible value. Both controllers also experience longer 
settling time as Ki increases but SIPIC performs slightly better by having slightly shorter 
settling time.  
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 Lastly, Kp value was increased to 15. Rise time remains the same for both controllers. 
The increase in Kp value causes minor changes to overshoot in both controller while 
increasing the settling time for both controller. As Ki increases, similar pattern as before 
can be seen. Both overshoot and settling time increases alongside the Ki value and PI 
controller still have lower overshoot while settling time are similar for both controller.  
 

3.2.2 270 to 90 
Table 5. Results for loading condition second input 

    Overshoot Rise Time Settling Time 

Kp Ki PI SIPIC PI SIPIC PI  SIPIC 

1 1 1.209 1.033 0.09 0.098 N/A 0.647 

1 5 2.18 1.429 0.101 0.092 1.507 1.137 

1 10 3.251 1.586 0.052 0.094 N/A 1.679 

1 15 N/A 1.778 0.052 0.091 N/A 1.756 

1 20 N/A 1.765 0.052 0.091 N/A 2.07 

2 1 1.47 1.316 0.059 0.06 N/A 0.682 

2 5 1.765 1.586 0.057 0.058 0.938 0.789 

2 10 2.224 1.674 0.054 0.059 1.525 1.046 

2 15 2.673 1.759 0.054 0.059 N/A 1.238 

2 20 3.349 1.85 0.052 0.058 N/A 1.638 

3 1 1.467 1.495 0.053 0.053 0.757 1.529 

3 5 1.75 1.743 0.053 0.053 1.395 0.758 

3 10 1.988 1.982 0.053 0.053 1.016 0.978 

3 15 2.321 2.139 0.052 0.052 1.42 1.102 

3 20 2.557 2.287 0.052 0.052 1.97 1.269 

4 1 1.436 1.514 0.052 0.052 0.723 1.436 

4 5 1.674 1.825 0.052 0.053 1.541 0.756 

4 10 1.875 2.152 0.052 0.053 0.889 0.88 

4 15 2.067 2.447 0.052 0.052 1.123 0.916 

4 20 2.347 2.598 0.051 0.052 1.185 1.147 

5 1 1.414 1.527 0.052 0.052 0.73 0.824 

5 5 1.599 1.9 0.051 0.052 0.788 0.791 

5 10 1.803 2.281 0.052 0.051 1.081 0.907 

5 15 1.985 2.516 0.052 0.052 0.968 0.94 

5 20 2.18 2.651 0.052 0.051 1.062 1.064 

10 1 1.388 1.495 0.052 0.051 0.769 0.72 

10 5 1.508 1.74 0.052 0.051 0.858 0.774 

10 10 1.624 1.951 0.052 0.051 1.171 0.834 

10 15 1.712 2.108 0.052 0.051 1.034 0.93 

10 20 1.806 2.19 0.052 0.051 1.006 1.144 

15 1 1.42 1.442 0.052 0.051 0.837 0.83 
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2 20 3.349 1.85 0.052 0.058 N/A 1.638 

3 1 1.467 1.495 0.053 0.053 0.757 1.529 

3 5 1.75 1.743 0.053 0.053 1.395 0.758 

3 10 1.988 1.982 0.053 0.053 1.016 0.978 

3 15 2.321 2.139 0.052 0.052 1.42 1.102 

3 20 2.557 2.287 0.052 0.052 1.97 1.269 

4 1 1.436 1.514 0.052 0.052 0.723 1.436 

4 5 1.674 1.825 0.052 0.053 1.541 0.756 

4 10 1.875 2.152 0.052 0.053 0.889 0.88 

4 15 2.067 2.447 0.052 0.052 1.123 0.916 

4 20 2.347 2.598 0.051 0.052 1.185 1.147 

5 1 1.414 1.527 0.052 0.052 0.73 0.824 

5 5 1.599 1.9 0.051 0.052 0.788 0.791 

5 10 1.803 2.281 0.052 0.051 1.081 0.907 

5 15 1.985 2.516 0.052 0.052 0.968 0.94 

5 20 2.18 2.651 0.052 0.051 1.062 1.064 

10 1 1.388 1.495 0.052 0.051 0.769 0.72 

10 5 1.508 1.74 0.052 0.051 0.858 0.774 

10 10 1.624 1.951 0.052 0.051 1.171 0.834 

10 15 1.712 2.108 0.052 0.051 1.034 0.93 

10 20 1.806 2.19 0.052 0.051 1.006 1.144 

15 1 1.42 1.442 0.052 0.051 0.837 0.83 

15 5 1.467 1.655 0.052 0.051 0.952 0.855 

15 10 1.527 1.803 0.052 0.051 0.978 0.895 

15 15 1.58 1.916 0.052 0.051 1.112 0.999 

15 20 1.687 1.966 0.052 0.051 1.094 1.198 

20 1 1.379 1.414 0.052 0.051 0.893 0.946 

20 5 1.436 1.52 0.052 0.051 0.948 0.954 

20 10 1.464 1.69 0.052 0.051 1.045 0.966 

20 15 1.539 1.794 0.052 0.051 1.127 1.059 

20 20 1.596 1.809 0.052 0.051 1.153 1.373 

 

 
Fig. 16. Performance graph when Kp = 1, Ki = 1 
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Fig. 17. Performance graph when Kp = 1, Ki = 20 

 

 
Fig. 18. Performance graph when Kp = 20, Ki = 1 
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Fig. 17. Performance graph when Kp = 1, Ki = 20 

 

 
Fig. 18. Performance graph when Kp = 20, Ki = 1 

 
 

 
Fig. 19. Performance graph when Kp = 20, Ki = 20 

 
Table 5 show the results obtained for second input under loading condition. When 

both Kp and Ki is 1 as shown in Fig. 13, PI controller shows higher overshoot, longer 
settling time but slightly shorter rise time as compared to SIPIC controller. As Ki value 
increases, a major increase in overshoot can be seen in the PI controller and while SIPIC 
controller also experience an increase in overshoot, the increase is subtle as compared to PI 
controller. A very minimal spike was seen in the PI controller when Ki value was increased 
from 1 to 5 but the rise time then decreases when the value was further increased to 10. For 
settling time, a steady increase can be seen in the SIPIC controller as the Ki value increases. 
However, for the PI controller, it was unable to settle inside the desired range within the 
step time given. Fig. 14 shows the controller performance when Kp is 1 and Ki is 15, the 
overshoot and settling time experienced by the PI controller is far higher than the SIPIC 
controller.  

 
 Moving on to Kp = 5, the increase in Kp value causes the overshoot of both controller 

to increase and an increase in rise time can be seen in both controller. A more stable 
performance is seen in the PI controller as the controller can settle in the given step time 
while the SIPIC controller has a slightly longer settling time due to the increase in Kp value. 
As the Ki value increases, overshoot starts to increase in both controller and PI controller 
has a lower overshoot as compared to SIPIC controller. Rise time of both controllers are 
similar while PI controller shows slightly shorter settling time as compared to SIPIC 
controller.  

 
 When the Kp value is increased to 10, both controller experienced a decrease in 

overshoot but slight decrease in the settling time. Rise time remains the same as it is the 
lowest possible rise time due to limitation of hardware. The pattern for overshoot is similar 
as before where overshoot increase alongside the Ki value with PI controller having lower 
overshoot than SIPIC controller. Similar trend can also be found in settling time of both 
controller. As Ki increases, both controller starts to have longer settling time and SIPIC 
controller perform slightly better in this aspect.  
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 As the Kp value further increases to 15, PI controller continue to see an increase in 

overshoot while SIPIC controller experience decrease in overshoot. Rise time remains the 
same for both controller and settling time increased for both controller. The same trend is 
seen for both overshoot and settling time of both controllers as Ki value increases. When 
both Kp and Ki is 15 as seen in Fig. 15, PI controller performs better in terms of overshoot 
while SIPIC controller shows more ideal performance in terms of settling time.  

 
4. Conclusion 

 
 To conclude this paper, a new type of anti-windup PI controller was used for the 

application of motor position control and the performance of the proposed controller was 
used to compare with the performance of a conventional PI controller. The controllers were 
tested under no load and under loading condition while two different inputs were used to 
test the controllers: 0˚ to 90˚ and 270˚ to 90˚. Results show that under no load condition, 
SIPIC controller performs better than PI controller by having lower overshoot and lower 
settling time across various gains. Under loading condition, PI controller showed to be 
unstable under some of the gains as it experience large amount of oscillations and 
overshoot as well as very long settling time whereas under the same gain, the proposed 
SIPIC controller still shows acceptable performance. As a conclusion, the proposed SIPIC 
controller shows a more reliable performance as compared to PI controller when 
experiment was conducted. A wider range of gain can be used for the SIPIC controller 
whereas PI controller only performs well under a small range of gain.  

 
 As this paper only compares the performance between the proposed SIPIC controller 

and conventional PI controller, the future work includes further validating the performance 
of SIPIC controller in motor position control by comparing it with other anti-windup PI 
controller. SIPIC controller can also be further refined to achieve lower overshoot, shorter 
rise time and settling time. Wider range of gain can also be used to test the performance of 
SIPIC controller to further test the stability of the controller.  
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