

The involvement of control system in the industry can mainly be found in speed
control and position control. In position control system, mechanical position usually is the
system output for an arm or a pointer. The controller performance highly affects the
accuracy of arm/pointer system output. The position control system applications can be
commonly found in automated systems such as solar tracking system and robotic system.
Servomotor is usually used as the actuator for position control system. Servomotor is a type
of direct current (DC) motor that is capable of precise control for velocity and acceleration
as well as angular and linear positions. Many types of controllers have been used in the
application of position control systems. These controllers usually include the use of fuzzy
logic, fractional order, finite control with model predictive controllers as well as a proposed
controller that combines the characteristics of μ-synthesis and neural network [1].

 The proposed controller is a modified crisp fuzzy logic controller where modifications
were done on both the input and the output of the controller. The input of the controller
uses crisp rectangular adjacent non-overlapping membership function which is distributed
along the discourse universe whereas modification for the output was done on the
computation method [1]. The controller showed acceptable performance and shorter
processing time than conventional fuzzy logic controller [2].

Another proposed controller is based on finite control set model predictive control
for the application of permanent magnet synchronous motor (PMSM). This controller
predicts the future behavior of the actuator and perform action that is chosen from a model
set [3]. Other than that, many also applied fractional order calculus in motor position
control which uses a fractional order PI controller and compared to integer order PI
controller. The fractional order controller contains two extra variables which allow more
flexible and precise tuning in the applications. Tt can be concluded that fractional order PI
controller experience less overshoot and lower maximum percentage of error than
conventional PI controller [4]. Further expanded application of fractional order added with
differential evolution algorithm is also introduced in PI controllers. This method adds a
self-tuning ability to the controller for the application of voice coil motor (VCM). Result
shows that the proposed controller experience lower settling time, tracking error as well as
lower maximum overshoot as compared to conventional PI controller and standalone
fractional order PI controller [5].

In this paper, Proportional-integral-derivatives (PID) controller is chosen due to its

simplicity in applications [6]. By tuning the controller’s three individual components,
overshoots, steady-state errors, rise times and settling times of the system can be altered
easily. The limitation of a conventional PID controller is often caused by the limitation of
the actuator being used instead of the controller itself. When the output of the controller
exceeds the limit of the actuator, the controller begins to lose the ability to control the
system. Example can be shown through the flushing mechanism. The system controls the
opening of the valve to limit the flow rate of the water depending on the tank level.
However, if the error continues to grow even after the valve is fully open, the flow rate of
the water will not continue to increase due to the limitation of the valve. This condition is
known as the integral windup phenomenon, where the integral component continues to
offset the error even when the output remains the same.

Over the years, several anti-windup schemes had been proposed to eliminate the

integral windup phenomenon and to increase the efficiency of PID controller. These
schemes include the Conditional Integration (CI), Tracking Back Calculation (TBC),
Integral State Prediction (ISP), pole placement method and gain scheduling method.

2

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

The involvement of control system in the industry can mainly be found in speed
control and position control. In position control system, mechanical position usually is the
system output for an arm or a pointer. The controller performance highly affects the
accuracy of arm/pointer system output. The position control system applications can be
commonly found in automated systems such as solar tracking system and robotic system.
Servomotor is usually used as the actuator for position control system. Servomotor is a type
of direct current (DC) motor that is capable of precise control for velocity and acceleration
as well as angular and linear positions. Many types of controllers have been used in the
application of position control systems. These controllers usually include the use of fuzzy
logic, fractional order, finite control with model predictive controllers as well as a proposed
controller that combines the characteristics of μ-synthesis and neural network [1].

 The proposed controller is a modified crisp fuzzy logic controller where modifications
were done on both the input and the output of the controller. The input of the controller
uses crisp rectangular adjacent non-overlapping membership function which is distributed
along the discourse universe whereas modification for the output was done on the
computation method [1]. The controller showed acceptable performance and shorter
processing time than conventional fuzzy logic controller [2].

Another proposed controller is based on finite control set model predictive control
for the application of permanent magnet synchronous motor (PMSM). This controller
predicts the future behavior of the actuator and perform action that is chosen from a model
set [3]. Other than that, many also applied fractional order calculus in motor position
control which uses a fractional order PI controller and compared to integer order PI
controller. The fractional order controller contains two extra variables which allow more
flexible and precise tuning in the applications. Tt can be concluded that fractional order PI
controller experience less overshoot and lower maximum percentage of error than
conventional PI controller [4]. Further expanded application of fractional order added with
differential evolution algorithm is also introduced in PI controllers. This method adds a
self-tuning ability to the controller for the application of voice coil motor (VCM). Result
shows that the proposed controller experience lower settling time, tracking error as well as
lower maximum overshoot as compared to conventional PI controller and standalone
fractional order PI controller [5].

In this paper, Proportional-integral-derivatives (PID) controller is chosen due to its

simplicity in applications [6]. By tuning the controller’s three individual components,
overshoots, steady-state errors, rise times and settling times of the system can be altered
easily. The limitation of a conventional PID controller is often caused by the limitation of
the actuator being used instead of the controller itself. When the output of the controller
exceeds the limit of the actuator, the controller begins to lose the ability to control the
system. Example can be shown through the flushing mechanism. The system controls the
opening of the valve to limit the flow rate of the water depending on the tank level.
However, if the error continues to grow even after the valve is fully open, the flow rate of
the water will not continue to increase due to the limitation of the valve. This condition is
known as the integral windup phenomenon, where the integral component continues to
offset the error even when the output remains the same.

Over the years, several anti-windup schemes had been proposed to eliminate the

integral windup phenomenon and to increase the efficiency of PID controller. These
schemes include the Conditional Integration (CI), Tracking Back Calculation (TBC),
Integral State Prediction (ISP), pole placement method and gain scheduling method.

 Conditional Integration is one of the most common schemes and it function by
switching off the integral component during saturation state then turns it back on when the
controller enters a linear state again. Tracking Back Calculation measures the difference
between the output signal and the non-saturation state signal before feeding the error back
to obtain higher accuracy. Another scheme is the Integral State Prediction (ISP). This
scheme predicts the steady-state value and feed the value back to the integral state when the
controller re-enters linear state [7].

 Recently, both pole placement and gain scheduling methods were introduced in PID.
The desired plant is first transformed into a type-1 plant as type-0 plant will always have
error. Pole placement method is then used for the derivation of the controller gain [8].
Lastly, gain scheduling proposed the use of various gains and constants for different
controller states for higher accuracy [9].

This paper uses a new type of controller known as Steady-state Integral
Proportional Integral Controller (SIPIC) scheme for the application of position control
system. Steady-state Integral Proportional Integral Controller (SIPIC) scheme is also
another proposed controller that can overcome integral windup. It does that by having a
separate closed loop feedback with the steady state integral value as an input. This
constantly leads the integral control towards the steady state integral value[7]. It was
mentioned earlier that different component of PID controller will have different effect on
the performance and for PI controller, it will often have a short settling time with overshoot
performance. SIPIC scheme made it possible to have a controller with short settling time
with no overshoot performance due to its tuning decoupling ability. This ability allows the
proportional gain (Kp) and integral gain (Ki) to be tune separately.

SIPIC has shown ideal performance with little overshoot while maintaining short

settling time on a DC motor speed control application[7]. However, no work had been done
on applying the SIPIC scheme on a DC motor position control application. Therefore, this
research aims to validate the usage of proposed SIPIC controller in the application of motor
position control. The objectives of this research are as below:

1. To develop a new anti-windup PI controller that is suitable for motor position
control.

2. To validate the stability and performance of the new PI controller by studying the
overshoot, steady-state error and settling time of the controller.

3. To investigate and determine the range of gain that will maximize the performance
of the PI controller for motor position control.

2. RESEARCH METHODOLOGY

2.1 Experimental Setup

 Hardware testing was done to verify the proposed SIPIC controller. Comparison was
done between SIPIC controller and conventional PI controller. The performance of the
controllers is evaluated based on theirs steady-state error, overshoot, rise time as well as
settling time. SCILAB and SCICOSLAB software were used to carry out experiment and
data analysis for both the controllers. Figure below shows the equipment used for
experimental testing purpose.

3

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig 1. Experimental setup

2.2 SIPIC

This section focuses on the SIPIC controller and its characteristics. Based on

previous work done by [7], Eq. 1 shows the generic template where SIPIC was developed

from. , , , and represents Laplace form of integral state, integral during
steady state, function in Laplace form, Laplace domain and non-negative integer

respectively. and are constants. Eq. 2 below shows integral component of SIPIC after
various substitutions and derivations while Eq. 3 shows the error equation of SIPIC.

 (1)

 (2)

 (3)

2.3 Input Reference

Based on the previous work done on SIPIC controller, the input reference was

modified for the application of motor position control. Fig. 2 shows the block diagram for
motor position control. From this, Eq. 4 was derived, and Eq. 5 shows the final input
reference for motor position control for SIPIC controller. Fig. 3 shows the SIPIC controller
block diagram for experimental setup whereas Table 1 shows the parameter used to obtain
the input reference.

4

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig 1. Experimental setup

2.2 SIPIC

This section focuses on the SIPIC controller and its characteristics. Based on

previous work done by [7], Eq. 1 shows the generic template where SIPIC was developed

from. , , , and represents Laplace form of integral state, integral during
steady state, function in Laplace form, Laplace domain and non-negative integer

respectively. and are constants. Eq. 2 below shows integral component of SIPIC after
various substitutions and derivations while Eq. 3 shows the error equation of SIPIC.

 (1)

 (2)

 (3)

2.3 Input Reference

Based on the previous work done on SIPIC controller, the input reference was

modified for the application of motor position control. Fig. 2 shows the block diagram for
motor position control. From this, Eq. 4 was derived, and Eq. 5 shows the final input
reference for motor position control for SIPIC controller. Fig. 3 shows the SIPIC controller
block diagram for experimental setup whereas Table 1 shows the parameter used to obtain
the input reference.

Fig. 2. Motor position control block diagram

 (4)

 (5)

Fig. 3. SIPIC experimental setup block diagram

5

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Table 1. Parameters for experiment [7]
Characteristics Values

Viscous damping coefficient, B 2.12 x 10-4 kg m2/s
Inductance, L 0.005 H

Moment of inertia of motor, J 2.14 x 10-5 kg m2

Torque constant, KT 0.09 Nm/A
Back-emf constant, Km 0.09 Nm/A

Efficiency, ƞ 0.8

Resistance, R 7.8 Ω
Moment of inertia of mild steel black plating 8.63 x 10-5 kgm2

3. Results and Discussions

This section shows the results obtained from hardware testing. Necessary

information was obtained from the extracted data and analysis was done to verify the
performance of each controller. Comparison was done between the two controllers to verify
the proposed SIPIC controller for motor position control under no load condition and under
load condition.

Two different step inputs were used for testing. For the first step input, the

controller travels from 0˚ to 90˚ and for the second input, the pointer travel from 270˚ to
90˚. To put this into real life application, the first input is similar as to when changing
steering direction of a vehicle while travelling in straight line while the second input is
similar as to changing the direction of a vehicle from left directly to right. The stability in
each case is different.

All the data obtained was tabulated below from table 2 to table 4. The table

indicates

3.1 No Load
3.1.1 0 to 90

Table 2. Results for no load condition first input
 Overshoot Rise Time Settling Time

Kp Ki PI SIPIC PI SIPIC PI SIPIC
1 1 0.132 0.05 0.078 0.086 1.737 2.34
1 5 0.452 0.21 0.064 0.091 0.504 0.671
1 10 0.722 0.374 0.056 0.095 0.576 0.981
1 15 0.949 0.487 0.05 0.094 0.93 0.762
1 20 1.09 0.543 0.046 0.095 1.228 1.047
2 1 0.251 0.204 0.04 0.042 0.156 0.632
2 5 0.371 0.188 0.037 0.048 0.688 0.434
2 10 0.521 0.295 0.035 0.055 0.175 0.333
2 15 0.634 0.411 0.034 0.059 0.242 0.541
2 20 0.663 0.502 0.034 0.061 0.239 0.486
3 1 0.389 0.358 0.027 0.029 0.165 0.167
3 5 0.452 0.242 0.027 0.033 0.161 0.352
3 10 0.502 0.305 0.026 0.038 0.496 0.251
3 15 0.524 0.367 0.026 0.043 0.396 0.233

6

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Table 1. Parameters for experiment [7]
Characteristics Values

Viscous damping coefficient, B 2.12 x 10-4 kg m2/s
Inductance, L 0.005 H

Moment of inertia of motor, J 2.14 x 10-5 kg m2

Torque constant, KT 0.09 Nm/A
Back-emf constant, Km 0.09 Nm/A

Efficiency, ƞ 0.8

Resistance, R 7.8 Ω
Moment of inertia of mild steel black plating 8.63 x 10-5 kgm2

3. Results and Discussions

This section shows the results obtained from hardware testing. Necessary

information was obtained from the extracted data and analysis was done to verify the
performance of each controller. Comparison was done between the two controllers to verify
the proposed SIPIC controller for motor position control under no load condition and under
load condition.

Two different step inputs were used for testing. For the first step input, the

controller travels from 0˚ to 90˚ and for the second input, the pointer travel from 270˚ to
90˚. To put this into real life application, the first input is similar as to when changing
steering direction of a vehicle while travelling in straight line while the second input is
similar as to changing the direction of a vehicle from left directly to right. The stability in
each case is different.

All the data obtained was tabulated below from table 2 to table 4. The table

indicates

3.1 No Load
3.1.1 0 to 90

Table 2. Results for no load condition first input
 Overshoot Rise Time Settling Time

Kp Ki PI SIPIC PI SIPIC PI SIPIC
1 1 0.132 0.05 0.078 0.086 1.737 2.34
1 5 0.452 0.21 0.064 0.091 0.504 0.671
1 10 0.722 0.374 0.056 0.095 0.576 0.981
1 15 0.949 0.487 0.05 0.094 0.93 0.762
1 20 1.09 0.543 0.046 0.095 1.228 1.047
2 1 0.251 0.204 0.04 0.042 0.156 0.632
2 5 0.371 0.188 0.037 0.048 0.688 0.434
2 10 0.521 0.295 0.035 0.055 0.175 0.333
2 15 0.634 0.411 0.034 0.059 0.242 0.541
2 20 0.663 0.502 0.034 0.061 0.239 0.486
3 1 0.389 0.358 0.027 0.029 0.165 0.167
3 5 0.452 0.242 0.027 0.033 0.161 0.352
3 10 0.502 0.305 0.026 0.038 0.496 0.251
3 15 0.524 0.367 0.026 0.043 0.396 0.233

3 20 0.638 0.44 0.025 0.045 0.328 0.394
4 1 0.471 0.418 0.022 0.023 0.171 0.139
4 5 0.506 0.308 0.022 0.026 0.392 0.311
4 10 0.553 0.283 0.022 0.03 0.438 0.232
4 15 0.565 0.352 0.022 0.033 0.369 0.197
4 20 0.65 0.427 0.021 0.036 0.349 0.322
5 1 0.515 0.471 0.021 0.021 0.172 0.165
5 5 0.55 0.33 0.02 0.022 0.183 0.314
5 10 0.59 0.286 0.02 0.024 0.187 0.223
5 15 0.59 0.327 0.02 0.03 0.193 0.187
5 20 0.619 0.396 0.019 0.03 0.19 0.172
10 1 0.537 0.524 0.019 0.019 0.176 0.179
10 5 0.55 0.474 0.019 0.019 0.183 0.287
10 10 0.575 0.443 0.019 0.019 0.188 0.223
10 15 0.597 0.43 0.019 0.019 0.191 0.178
10 20 0.606 0.455 0.019 0.019 0.195 0.145
15 1 0.543 0.521 0.019 0.019 0.178 0.154
15 5 0.55 0.493 0.019 0.019 0.193 0.231
15 10 0.553 0.458 0.019 0.019 0.204 0.201
15 15 0.562 0.443 0.019 0.019 0.21 0.168
15 20 0.581 0.449 0.019 0.019 0.209 0.144
20 1 0.534 0.531 0.019 0.019 0.201 0.177
20 5 0.543 0.506 0.019 0.019 0.197 0.168
20 10 0.553 0.477 0.019 0.019 0.216 0.176
20 15 0.556 0.462 0.019 0.019 0.225 0.154
20 20 0.568 0.436 0.019 0.019 0.228 0.136

Fig. 4. Performance graph when Kp = 1, Ki = 1

Green: SIPIC Pink: PI

Time

R
adian

7

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig 5. Performance graph when Kp = 1, Ki = 20

Fig. 6. Performance graph when Kp = 20, Ki = 1

8

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig 5. Performance graph when Kp = 1, Ki = 20

Fig. 6. Performance graph when Kp = 20, Ki = 1

Fig. 7. Performance graph when Kp = 20, Ki = 20

Table 2 above shows the performance of both controllers when Kp is 1 and Ki is 1,

5, 10 and 15 respectively. As the integral gain increases, both controllers experience an
increase in overshoot but SIPIC controller have a significantly lower overshoot especially
at higher Ki value. Moving on to the rise time of the controllers, different pattern is seen in
each controller. For PI controller, rise time decrease as the integral gain increase but for
SIPIC, rise time increase alongside the integral gain. However, SIPIC shows higher rise
time compared to PI controller. Lastly, the settling time of the controllers is compared.
Under comparison, when both the gain is 1, SIPIC shows a higher settling time. When the
integral gain is increased to 5, both controller experience a big drop in settling time but as
the integral gain continue to increase, settling time gradually increase in PI controller but
experience minor up and down changes in SIPIC controller.

Next, Ki is kept at 1 and Kp is increased from 1 to 5, it is seen from results that the

overshoot for both controllers increased significantly. Rise time and settling time decreases
for both controller. Both controllers now experienced similar overshoot, rise time as well as
settling time. As the integral value increases, PI controller experience slight increase in
overshoot but SIPIC controller experience slight decrease in overshoot. The rise time of PI
controller remain constant whereas SIPIC controller has slight increase in rise time when
the integral gain increases. For settling time, PI controller experience slight increase. For
SIPIC controller, when the Ki value is increase from 1 to 5, there is an increase in settling
time but setting time experience a descent when the Ki value is further increased.

The Kp value was then increased to 10. The increased of Kp value causes the same

effect to both controllers, increase in overshoot and settling time but decrease in rise time.
SIPIC controller still has a lower overshoot than PI controller, similar settling time and both
controller now have the same rise time. As the integral gain increase, overshoot for PI
controller has a slight increase but a slight decrease is experienced by SIPIC controller.
There are no changes in rise time for both controller as this is the lowest possible rise time
due to hardware limitation. PI controller continue to experience slight increase in settling

9

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

time as Ki increases while settling time for SIPIC controller first increase then decreases,
like where the Kp is 5.

Lastly, Kp was increased to15. The rise time for both controllers is still 0.019s,

same as before. The increase in Kp causes a slight increase in overshoot and settling time of
PI controller but a slight decrease in overshoot and settling time of SIPIC controller.
Increasing Ki value continue to cause slight increase in overshoot of PI controller but
decrease in overshoot for SIPIC controller. Same pattern is also seen in settling time of both
controller. The increase in Ki value results in increase of settling time for PI controller but
for SIPIC controller, the settling time first increases then start to decrease when the Ki value
is further increased from 5.

Under no load condition first input, both controller shows very close performance.

The proposed SIPIC controller have lower overshoot at all parameter as compared to
conventional PI controller. SIPIC controller experiences higher rise time at low Kp value
but both controller experience similar rise time when Kp value is further increased.
Comparing the condition when both Kp and Ki is 15 as shown in Fig. 6, SIPIC controllers
outperform PI controller by having a lower overshoot as well as lower settling time. This is
because at higher Ki value, SIPIC controller experience decrease in both overshoot and
settling time but PI controller experience increase in both components.

3.1.2 270 to 90
Table 3. Results for no load condition second input

 Overshoot Rise Time Settling Time

Kp Ki PI SIPIC PI SIPIC PI SIPIC
1 1 0.358 0.213 0.069 0.076 2.209 1.942

1 5 0.986 0.468 0.061 0.089 0.584 0.647

1 10 1.486 0.785 0.053 0.091 0.499 0.868

1 15 1.756 0.967 0.049 0.095 1.223 1.137

1 20 2.149 1.087 0.044 0.094 1.093 1.377

2 1 0.433 0.427 0.036 0.039 0.191 1.302

2 5 0.704 0.44 0.033 0.046 0.941 0.523

2 10 0.983 0.619 0.034 0.055 0.612 0.337

2 15 1.156 0.801 0.033 0.058 0.561 0.523

2 20 1.285 1.002 0.032 0.06 0.448 0.702

3 1 0.616 0.54 0.032 0.033 0.169 1.288

3 5 0.769 0.531 0.031 0.035 1.023 0.515

3 10 0.923 0.644 0.03 0.037 0.676 0.309

3 15 1.055 0.776 0.03 0.042 0.528 0.419

3 20 1.244 0.936 0.03 0.043 0.424 0.391

4 1 0.669 0.631 0.031 0.031 0.216 1.005

4 5 0.782 0.587 0.03 0.032 1.11 0.501

4 10 0.901 0.682 0.03 0.033 0.857 0.318

4 15 1.03 0.851 0.03 0.034 0.649 0.217

4 20 1.15 0.952 0.03 0.036 0.552 0.333

10

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

time as Ki increases while settling time for SIPIC controller first increase then decreases,
like where the Kp is 5.

Lastly, Kp was increased to15. The rise time for both controllers is still 0.019s,

same as before. The increase in Kp causes a slight increase in overshoot and settling time of
PI controller but a slight decrease in overshoot and settling time of SIPIC controller.
Increasing Ki value continue to cause slight increase in overshoot of PI controller but
decrease in overshoot for SIPIC controller. Same pattern is also seen in settling time of both
controller. The increase in Ki value results in increase of settling time for PI controller but
for SIPIC controller, the settling time first increases then start to decrease when the Ki value
is further increased from 5.

Under no load condition first input, both controller shows very close performance.

The proposed SIPIC controller have lower overshoot at all parameter as compared to
conventional PI controller. SIPIC controller experiences higher rise time at low Kp value
but both controller experience similar rise time when Kp value is further increased.
Comparing the condition when both Kp and Ki is 15 as shown in Fig. 6, SIPIC controllers
outperform PI controller by having a lower overshoot as well as lower settling time. This is
because at higher Ki value, SIPIC controller experience decrease in both overshoot and
settling time but PI controller experience increase in both components.

3.1.2 270 to 90
Table 3. Results for no load condition second input

 Overshoot Rise Time Settling Time

Kp Ki PI SIPIC PI SIPIC PI SIPIC
1 1 0.358 0.213 0.069 0.076 2.209 1.942

1 5 0.986 0.468 0.061 0.089 0.584 0.647

1 10 1.486 0.785 0.053 0.091 0.499 0.868

1 15 1.756 0.967 0.049 0.095 1.223 1.137

1 20 2.149 1.087 0.044 0.094 1.093 1.377

2 1 0.433 0.427 0.036 0.039 0.191 1.302

2 5 0.704 0.44 0.033 0.046 0.941 0.523

2 10 0.983 0.619 0.034 0.055 0.612 0.337

2 15 1.156 0.801 0.033 0.058 0.561 0.523

2 20 1.285 1.002 0.032 0.06 0.448 0.702

3 1 0.616 0.54 0.032 0.033 0.169 1.288

3 5 0.769 0.531 0.031 0.035 1.023 0.515

3 10 0.923 0.644 0.03 0.037 0.676 0.309

3 15 1.055 0.776 0.03 0.042 0.528 0.419

3 20 1.244 0.936 0.03 0.043 0.424 0.391

4 1 0.669 0.631 0.031 0.031 0.216 1.005

4 5 0.782 0.587 0.03 0.032 1.11 0.501

4 10 0.901 0.682 0.03 0.033 0.857 0.318

4 15 1.03 0.851 0.03 0.034 0.649 0.217

4 20 1.15 0.952 0.03 0.036 0.552 0.333

5 1 0.697 0.685 0.03 0.03 0.184 0.943

5 5 0.782 0.672 0.03 0.03 1.212 0.485

5 10 0.905 0.769 0.029 0.031 0.916 0.328

5 15 0.964 0.873 0.029 0.03 0.721 0.223

5 20 1.043 1.011 0.029 0.03 0.618 0.298

10 1 0.682 0.682 0.029 0.03 0.196 0.496

10 5 0.71 0.691 0.029 0.03 0.255 0.435

10 10 0.776 0.741 0.029 0.03 0.98 0.307

10 15 0.826 0.801 0.029 0.03 0.943 0.237

10 20 0.864 0.892 0.029 0.03 0.864 0.185

15 1 0.694 0.682 0.029 0.03 0.214 0.224

15 5 0.704 0.688 0.029 0.03 0.223 0.36

15 10 0.732 0.691 0.029 0.03 0.631 0.267

15 15 0.769 0.713 0.029 0.03 0.935 0.219

15 20 0.798 0.744 0.029 0.03 0.912 0.182

20 1 0.691 0.691 0.029 0.03 0.219 0.199

20 5 0.697 0.688 0.029 0.03 0.24 0.267

20 10 0.719 0.704 0.029 0.03 0.291 0.235

20 15 0.738 0.694 0.029 0.03 0.701 0.204

20 20 0.769 0.716 0.029 0.03 0.866 0.174

Fig. 8. Performance graph when Kp = 1, Ki = 1

11

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig. 9. Performance graph when Kp = 1, Ki = 20

Fig. 10. Performance graph when Kp = 20, Ki = 1

12

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig. 9. Performance graph when Kp = 1, Ki = 20

Fig. 10. Performance graph when Kp = 20, Ki = 1

Fig. 11. Performance graph when Kp = 20, Ki = 20

As shown in Fig. 6, when both value is 1, SIPIC controller has lower overshoot

and settling time as compared to PI controller, but higher rise time. When the Ki value is
increased, both controller experience an increase in overshoot but the increase in PI
controller are far more significant. Rise time for PI controller decreases as the value of Ki
increases but SIPIC controller experience higher rise time at higher Ki value. For settling
time, both controller first experience a decrease before increasing again as Ki value is
further increased. When Kp is 1 and Ki is 15, SIPIC controller performs slightly better by
having lower overshoot and settling time but higher rise time as compared to PI controller.

Moving on, Kp value was increased from 1 to 5. Compared to when Kp value is 1,

both controller now have higher overshoot, lower rise time and lower settling time. As the
value of Ki increases, both controller experience an increase in overshoot. The changes in
rise time are insignificant in both controller. For settling time, SIPIC controller goes
through a steady decrease in settling time but an increase then decrease in the PI controller.
As the Ki value increases, the settling time of the SIPIC controller starts to be significantly
lower than the PI controller.

 When the Kp is further increased to 10 and 15, the rise time of both controllers remain

the same as it is the lowest rise time possible. Both controller also experience minor
changes in overshoot with SIPIC controller still having lower overshoot than PI controller.
For settling time, SIPIC controller continue to show higher settling time than PI controller
when the Ki value is small but SIPIC controller then outperform PI controller when the Ki
value increases.

13

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

3.2 With Load

3.2.1 0 to 90
Table 4. Results for loading condition first input

 Overshoot Rise Time Settling Time
Kp Ki PI SIPIC PI SIPIC PI SIPIC

1 1 0.543 0.521 0.096 0.1 0.532 1.18

1 5 1.121 0.697 0.083 0.097 1.314 1.423

1 10 1.624 0.876 0.075 0.095 N/A 1.804

1 15 N/A 0.923 0.068 0.09 N/A 2.012

1 20 N/A 0.942 0.063 0.09 N/A 1.986

2 1 0.81 0.697 0.063 0.064 1.595 0.667

2 5 0.917 0.766 0.058 0.06 0.967 0.631

2 10 1.165 0.854 0.054 0.061 1.157 0.957

2 15 1.354 0.905 0.051 0.061 N/A 1.038

2 20 1.476 0.945 0.049 0.06 N/A 1.449

3 1 0.813 0.807 0.046 0.047 0.586 0.579

3 5 0.958 0.848 0.044 0.047 0.736 0.609

3 10 1.043 0.927 0.043 0.046 0.874 0.831

3 15 1.212 0.952 0.043 0.046 1.413 0.963

3 20 1.26 0.952 0.041 0.046 1.722 1.034

4 1 0.917 0.886 0.039 0.04 0.626 0.615

4 5 0.967 0.92 0.039 0.04 0.709 0.65

4 10 1.052 0.955 0.037 0.039 0.824 0.642

4 15 1.134 0.977 0.038 0.039 0.951 0.643

4 20 1.256 1.005 0.036 0.039 1.044 0.912

5 1 0.895 0.939 0.037 0.037 0.593 0.762

5 5 0.961 0.971 0.039 0.037 0.718 0.65

5 10 1.037 1.037 0.036 0.037 0.73 0.658

5 15 1.106 1.065 0.036 0.037 0.815 0.667

5 20 1.168 1.118 0.036 0.037 0.929 0.672

10 1 0.889 0.92 0.035 0.035 0.652 0.664

10 5 0.933 1.074 0.036 0.035 0.717 0.644

10 10 0.974 1.209 0.035 0.035 0.791 0.68

10 15 1.002 1.344 0.035 0.035 0.802 0.683

10 20 1.043 1.426 0.035 0.035 0.799 0.858

15 1 0.908 0.917 0.035 0.035 0.724 0.711

15 5 0.92 1.046 0.035 0.035 0.772 0.73

15 10 0.942 1.172 0.035 0.035 0.791 0.764

15 15 0.958 1.25 0.035 0.035 0.792 0.789

14

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

3.2 With Load

3.2.1 0 to 90
Table 4. Results for loading condition first input

 Overshoot Rise Time Settling Time
Kp Ki PI SIPIC PI SIPIC PI SIPIC

1 1 0.543 0.521 0.096 0.1 0.532 1.18

1 5 1.121 0.697 0.083 0.097 1.314 1.423

1 10 1.624 0.876 0.075 0.095 N/A 1.804

1 15 N/A 0.923 0.068 0.09 N/A 2.012

1 20 N/A 0.942 0.063 0.09 N/A 1.986

2 1 0.81 0.697 0.063 0.064 1.595 0.667

2 5 0.917 0.766 0.058 0.06 0.967 0.631

2 10 1.165 0.854 0.054 0.061 1.157 0.957

2 15 1.354 0.905 0.051 0.061 N/A 1.038

2 20 1.476 0.945 0.049 0.06 N/A 1.449

3 1 0.813 0.807 0.046 0.047 0.586 0.579

3 5 0.958 0.848 0.044 0.047 0.736 0.609

3 10 1.043 0.927 0.043 0.046 0.874 0.831

3 15 1.212 0.952 0.043 0.046 1.413 0.963

3 20 1.26 0.952 0.041 0.046 1.722 1.034

4 1 0.917 0.886 0.039 0.04 0.626 0.615

4 5 0.967 0.92 0.039 0.04 0.709 0.65

4 10 1.052 0.955 0.037 0.039 0.824 0.642

4 15 1.134 0.977 0.038 0.039 0.951 0.643

4 20 1.256 1.005 0.036 0.039 1.044 0.912

5 1 0.895 0.939 0.037 0.037 0.593 0.762

5 5 0.961 0.971 0.039 0.037 0.718 0.65

5 10 1.037 1.037 0.036 0.037 0.73 0.658

5 15 1.106 1.065 0.036 0.037 0.815 0.667

5 20 1.168 1.118 0.036 0.037 0.929 0.672

10 1 0.889 0.92 0.035 0.035 0.652 0.664

10 5 0.933 1.074 0.036 0.035 0.717 0.644

10 10 0.974 1.209 0.035 0.035 0.791 0.68

10 15 1.002 1.344 0.035 0.035 0.802 0.683

10 20 1.043 1.426 0.035 0.035 0.799 0.858

15 1 0.908 0.917 0.035 0.035 0.724 0.711

15 5 0.92 1.046 0.035 0.035 0.772 0.73

15 10 0.942 1.172 0.035 0.035 0.791 0.764

15 15 0.958 1.25 0.035 0.035 0.792 0.789

15 20 0.989 1.319 0.035 0.035 0.898 0.964

20 1 0.876 0.895 0.035 0.035 0.785 0.834

20 5 0.908 0.999 0.035 0.035 0.869 0.833

20 10 0.911 1.09 0.035 0.035 0.875 0.834

20 15 0.952 1.178 0.035 0.035 0.883 0.876

20 20 0.964 1.209 0.035 0.035 0.958 1.119

Fig. 12. Performance graph when Kp = 1, Ki = 1

15

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig. 13. Performance graph when Kp = 1, Ki = 20

Fig. 14. Performance graph when Kp = 20, Ki = 1

16

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig. 13. Performance graph when Kp = 1, Ki = 20

Fig. 14. Performance graph when Kp = 20, Ki = 1

Fig. 15. Performance graph when Kp = 20, Ki = 20

Table 4 shows results of controller first input under loading condition. When both

Kp and Ki is 1 as shown in Fig. 10, SIPIC controller showed lower overshoot, shorter rise
time and settling time as compared to PI controller. As the Ki value increases, both
controller experience an increase in overshoot and decrease in rise time. Both controller
also experience an increase in the settling time of the controller but for PI, the settling time
were unable to be determined because the controller have not settled in the given step time.
When Kp is 1 and Ki is 15 as shown in Fig. 11, PI controller shows very high oscillation
and the overshoot, rise time and settling time were all not able to be determined. SIPIC
controller on the other hand, still showed a very stable performance. This proves that SIPIC
controller is more stable than conventional PI controller.

 As the Kp value is increases from 1 to 5, both controller experience higher overshoot

but lower rise time. PI controller experienced slightly longer slightly time but SIPIC
controller experienced shorter settling time. As the value of Ki increases, the overshoot for
both controller increases and both controller showed similar overshoot. The difference in
rise time of both controllers is insignificant while SIPIC controller shows shorter settling
time as Ki increases.

 The Kp value is increased to 10 with Ki value being 1, 5, 10 and 15 respectively.

Compared to when Kp was 5, both controller experience slight decrease in overshoot and
rise time. PI controller has a longer settling time than before while SIPIC controller now
has shorter settling time. As Ki increases, overshoot for both controllers increases while PI
controller outperform SIPIC controller by having lower overshoot. Both controller shows
similar rise time as this is the lowest possible value. Both controllers also experience longer
settling time as Ki increases but SIPIC performs slightly better by having slightly shorter
settling time.

17

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

 Lastly, Kp value was increased to 15. Rise time remains the same for both controllers.
The increase in Kp value causes minor changes to overshoot in both controller while
increasing the settling time for both controller. As Ki increases, similar pattern as before
can be seen. Both overshoot and settling time increases alongside the Ki value and PI
controller still have lower overshoot while settling time are similar for both controller.

3.2.2 270 to 90
Table 5. Results for loading condition second input

 Overshoot Rise Time Settling Time

Kp Ki PI SIPIC PI SIPIC PI SIPIC

1 1 1.209 1.033 0.09 0.098 N/A 0.647

1 5 2.18 1.429 0.101 0.092 1.507 1.137

1 10 3.251 1.586 0.052 0.094 N/A 1.679

1 15 N/A 1.778 0.052 0.091 N/A 1.756

1 20 N/A 1.765 0.052 0.091 N/A 2.07

2 1 1.47 1.316 0.059 0.06 N/A 0.682

2 5 1.765 1.586 0.057 0.058 0.938 0.789

2 10 2.224 1.674 0.054 0.059 1.525 1.046

2 15 2.673 1.759 0.054 0.059 N/A 1.238

2 20 3.349 1.85 0.052 0.058 N/A 1.638

3 1 1.467 1.495 0.053 0.053 0.757 1.529

3 5 1.75 1.743 0.053 0.053 1.395 0.758

3 10 1.988 1.982 0.053 0.053 1.016 0.978

3 15 2.321 2.139 0.052 0.052 1.42 1.102

3 20 2.557 2.287 0.052 0.052 1.97 1.269

4 1 1.436 1.514 0.052 0.052 0.723 1.436

4 5 1.674 1.825 0.052 0.053 1.541 0.756

4 10 1.875 2.152 0.052 0.053 0.889 0.88

4 15 2.067 2.447 0.052 0.052 1.123 0.916

4 20 2.347 2.598 0.051 0.052 1.185 1.147

5 1 1.414 1.527 0.052 0.052 0.73 0.824

5 5 1.599 1.9 0.051 0.052 0.788 0.791

5 10 1.803 2.281 0.052 0.051 1.081 0.907

5 15 1.985 2.516 0.052 0.052 0.968 0.94

5 20 2.18 2.651 0.052 0.051 1.062 1.064

10 1 1.388 1.495 0.052 0.051 0.769 0.72

10 5 1.508 1.74 0.052 0.051 0.858 0.774

10 10 1.624 1.951 0.052 0.051 1.171 0.834

10 15 1.712 2.108 0.052 0.051 1.034 0.93

10 20 1.806 2.19 0.052 0.051 1.006 1.144

15 1 1.42 1.442 0.052 0.051 0.837 0.83

18

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

 Lastly, Kp value was increased to 15. Rise time remains the same for both controllers.
The increase in Kp value causes minor changes to overshoot in both controller while
increasing the settling time for both controller. As Ki increases, similar pattern as before
can be seen. Both overshoot and settling time increases alongside the Ki value and PI
controller still have lower overshoot while settling time are similar for both controller.

3.2.2 270 to 90
Table 5. Results for loading condition second input

 Overshoot Rise Time Settling Time

Kp Ki PI SIPIC PI SIPIC PI SIPIC

1 1 1.209 1.033 0.09 0.098 N/A 0.647

1 5 2.18 1.429 0.101 0.092 1.507 1.137

1 10 3.251 1.586 0.052 0.094 N/A 1.679

1 15 N/A 1.778 0.052 0.091 N/A 1.756

1 20 N/A 1.765 0.052 0.091 N/A 2.07

2 1 1.47 1.316 0.059 0.06 N/A 0.682

2 5 1.765 1.586 0.057 0.058 0.938 0.789

2 10 2.224 1.674 0.054 0.059 1.525 1.046

2 15 2.673 1.759 0.054 0.059 N/A 1.238

2 20 3.349 1.85 0.052 0.058 N/A 1.638

3 1 1.467 1.495 0.053 0.053 0.757 1.529

3 5 1.75 1.743 0.053 0.053 1.395 0.758

3 10 1.988 1.982 0.053 0.053 1.016 0.978

3 15 2.321 2.139 0.052 0.052 1.42 1.102

3 20 2.557 2.287 0.052 0.052 1.97 1.269

4 1 1.436 1.514 0.052 0.052 0.723 1.436

4 5 1.674 1.825 0.052 0.053 1.541 0.756

4 10 1.875 2.152 0.052 0.053 0.889 0.88

4 15 2.067 2.447 0.052 0.052 1.123 0.916

4 20 2.347 2.598 0.051 0.052 1.185 1.147

5 1 1.414 1.527 0.052 0.052 0.73 0.824

5 5 1.599 1.9 0.051 0.052 0.788 0.791

5 10 1.803 2.281 0.052 0.051 1.081 0.907

5 15 1.985 2.516 0.052 0.052 0.968 0.94

5 20 2.18 2.651 0.052 0.051 1.062 1.064

10 1 1.388 1.495 0.052 0.051 0.769 0.72

10 5 1.508 1.74 0.052 0.051 0.858 0.774

10 10 1.624 1.951 0.052 0.051 1.171 0.834

10 15 1.712 2.108 0.052 0.051 1.034 0.93

10 20 1.806 2.19 0.052 0.051 1.006 1.144

15 1 1.42 1.442 0.052 0.051 0.837 0.83

15 5 1.467 1.655 0.052 0.051 0.952 0.855

15 10 1.527 1.803 0.052 0.051 0.978 0.895

15 15 1.58 1.916 0.052 0.051 1.112 0.999

15 20 1.687 1.966 0.052 0.051 1.094 1.198

20 1 1.379 1.414 0.052 0.051 0.893 0.946

20 5 1.436 1.52 0.052 0.051 0.948 0.954

20 10 1.464 1.69 0.052 0.051 1.045 0.966

20 15 1.539 1.794 0.052 0.051 1.127 1.059

20 20 1.596 1.809 0.052 0.051 1.153 1.373

Fig. 16. Performance graph when Kp = 1, Ki = 1

19

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig. 17. Performance graph when Kp = 1, Ki = 20

Fig. 18. Performance graph when Kp = 20, Ki = 1

20

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

Fig. 17. Performance graph when Kp = 1, Ki = 20

Fig. 18. Performance graph when Kp = 20, Ki = 1

Fig. 19. Performance graph when Kp = 20, Ki = 20

Table 5 show the results obtained for second input under loading condition. When

both Kp and Ki is 1 as shown in Fig. 13, PI controller shows higher overshoot, longer
settling time but slightly shorter rise time as compared to SIPIC controller. As Ki value
increases, a major increase in overshoot can be seen in the PI controller and while SIPIC
controller also experience an increase in overshoot, the increase is subtle as compared to PI
controller. A very minimal spike was seen in the PI controller when Ki value was increased
from 1 to 5 but the rise time then decreases when the value was further increased to 10. For
settling time, a steady increase can be seen in the SIPIC controller as the Ki value increases.
However, for the PI controller, it was unable to settle inside the desired range within the
step time given. Fig. 14 shows the controller performance when Kp is 1 and Ki is 15, the
overshoot and settling time experienced by the PI controller is far higher than the SIPIC
controller.

 Moving on to Kp = 5, the increase in Kp value causes the overshoot of both controller

to increase and an increase in rise time can be seen in both controller. A more stable
performance is seen in the PI controller as the controller can settle in the given step time
while the SIPIC controller has a slightly longer settling time due to the increase in Kp value.
As the Ki value increases, overshoot starts to increase in both controller and PI controller
has a lower overshoot as compared to SIPIC controller. Rise time of both controllers are
similar while PI controller shows slightly shorter settling time as compared to SIPIC
controller.

 When the Kp value is increased to 10, both controller experienced a decrease in

overshoot but slight decrease in the settling time. Rise time remains the same as it is the
lowest possible rise time due to limitation of hardware. The pattern for overshoot is similar
as before where overshoot increase alongside the Ki value with PI controller having lower
overshoot than SIPIC controller. Similar trend can also be found in settling time of both
controller. As Ki increases, both controller starts to have longer settling time and SIPIC
controller perform slightly better in this aspect.

21

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

 As the Kp value further increases to 15, PI controller continue to see an increase in

overshoot while SIPIC controller experience decrease in overshoot. Rise time remains the
same for both controller and settling time increased for both controller. The same trend is
seen for both overshoot and settling time of both controllers as Ki value increases. When
both Kp and Ki is 15 as seen in Fig. 15, PI controller performs better in terms of overshoot
while SIPIC controller shows more ideal performance in terms of settling time.

4. Conclusion

 To conclude this paper, a new type of anti-windup PI controller was used for the

application of motor position control and the performance of the proposed controller was
used to compare with the performance of a conventional PI controller. The controllers were
tested under no load and under loading condition while two different inputs were used to
test the controllers: 0˚ to 90˚ and 270˚ to 90˚. Results show that under no load condition,
SIPIC controller performs better than PI controller by having lower overshoot and lower
settling time across various gains. Under loading condition, PI controller showed to be
unstable under some of the gains as it experience large amount of oscillations and
overshoot as well as very long settling time whereas under the same gain, the proposed
SIPIC controller still shows acceptable performance. As a conclusion, the proposed SIPIC
controller shows a more reliable performance as compared to PI controller when
experiment was conducted. A wider range of gain can be used for the SIPIC controller
whereas PI controller only performs well under a small range of gain.

 As this paper only compares the performance between the proposed SIPIC controller

and conventional PI controller, the future work includes further validating the performance
of SIPIC controller in motor position control by comparing it with other anti-windup PI
controller. SIPIC controller can also be further refined to achieve lower overshoot, shorter
rise time and settling time. Wider range of gain can also be used to test the performance of
SIPIC controller to further test the stability of the controller.

References

1. A. . Benmakhlouf, A. . Louchene, and D. . Djarah, “Fuzzy logic and modified crisp

logic applied to a DC motor position control,” Control Intell. Syst., 38, no. 3, 173–180
(2010).

2. N. Bianchi and M. Dai Pre, “Active power filter control using neural network
technologies,” IEE Proceedings-Electric Power Appl., 150, no. 2, 139–145, (2003).

3. V. Slapak, K. Kyslan, and F. Durovsky, “Position Controller for PMSM Based on
Finite Control Set Model Predictive Control,” no. 1, 17–22 (2016).

4. K. Orman, A. Basci, A. Derdiyok, E. Engineering, and E. Engineering, “Speed and
Direction Angle Control of Four Wheel Drive Skid-Steered Mobile Robot by Using
Fractional Order PI Controller,” 14–20 (2016).

5. S.-Y. Chen and C.-S. Chia, “Precision Position Control of a Voice Coil Motor Using
Self-Tuning Fractional Order Proportional-Integral-Derivative Control,”
Micromachines, 7, no. 11, 207 (2016).

6. K. Kawamura and Y. Ishida, “Approach to New Model Recovery Anti-windup Scheme
with PID Controller,” 2015 3rd Int. Conf. Artif. Intell. Model. Simul., 208–212 (2015).

7. C. T. Ling, “A New Anti-windup PI control for Motor Speed Application,” no. June
(2016).

8. K. Sakai and Y. Ishida, “A Design of an Improved Anti-Windup Control Using a PI

22

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

 As the Kp value further increases to 15, PI controller continue to see an increase in

overshoot while SIPIC controller experience decrease in overshoot. Rise time remains the
same for both controller and settling time increased for both controller. The same trend is
seen for both overshoot and settling time of both controllers as Ki value increases. When
both Kp and Ki is 15 as seen in Fig. 15, PI controller performs better in terms of overshoot
while SIPIC controller shows more ideal performance in terms of settling time.

4. Conclusion

 To conclude this paper, a new type of anti-windup PI controller was used for the

application of motor position control and the performance of the proposed controller was
used to compare with the performance of a conventional PI controller. The controllers were
tested under no load and under loading condition while two different inputs were used to
test the controllers: 0˚ to 90˚ and 270˚ to 90˚. Results show that under no load condition,
SIPIC controller performs better than PI controller by having lower overshoot and lower
settling time across various gains. Under loading condition, PI controller showed to be
unstable under some of the gains as it experience large amount of oscillations and
overshoot as well as very long settling time whereas under the same gain, the proposed
SIPIC controller still shows acceptable performance. As a conclusion, the proposed SIPIC
controller shows a more reliable performance as compared to PI controller when
experiment was conducted. A wider range of gain can be used for the SIPIC controller
whereas PI controller only performs well under a small range of gain.

 As this paper only compares the performance between the proposed SIPIC controller

and conventional PI controller, the future work includes further validating the performance
of SIPIC controller in motor position control by comparing it with other anti-windup PI
controller. SIPIC controller can also be further refined to achieve lower overshoot, shorter
rise time and settling time. Wider range of gain can also be used to test the performance of
SIPIC controller to further test the stability of the controller.

References

1. A. . Benmakhlouf, A. . Louchene, and D. . Djarah, “Fuzzy logic and modified crisp

logic applied to a DC motor position control,” Control Intell. Syst., 38, no. 3, 173–180
(2010).

2. N. Bianchi and M. Dai Pre, “Active power filter control using neural network
technologies,” IEE Proceedings-Electric Power Appl., 150, no. 2, 139–145, (2003).

3. V. Slapak, K. Kyslan, and F. Durovsky, “Position Controller for PMSM Based on
Finite Control Set Model Predictive Control,” no. 1, 17–22 (2016).

4. K. Orman, A. Basci, A. Derdiyok, E. Engineering, and E. Engineering, “Speed and
Direction Angle Control of Four Wheel Drive Skid-Steered Mobile Robot by Using
Fractional Order PI Controller,” 14–20 (2016).

5. S.-Y. Chen and C.-S. Chia, “Precision Position Control of a Voice Coil Motor Using
Self-Tuning Fractional Order Proportional-Integral-Derivative Control,”
Micromachines, 7, no. 11, 207 (2016).

6. K. Kawamura and Y. Ishida, “Approach to New Model Recovery Anti-windup Scheme
with PID Controller,” 2015 3rd Int. Conf. Artif. Intell. Model. Simul., 208–212 (2015).

7. C. T. Ling, “A New Anti-windup PI control for Motor Speed Application,” no. June
(2016).

8. K. Sakai and Y. Ishida, “A Design of an Improved Anti-Windup Control Using a PI

Controller Based on a Pole Placement Method,” no. 2, 1–7 (2016).
9. S. C. Pratama, E. Susanto, and A. S. Wibowo, “Design and implementation of water

level control using gain scheduling PID back calculation integrator Anti Windup,”
ICCEREC 2016 - Int. Conf. Control. Electron. Renew. Energy, Commun., Conf. Proc.,
101–104 (2017).

23

MATEC Web of Conferences 152, 02022 (2018)	 https://doi.org/10.1051/matecconf/201815202022
Eureca 2017

