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In iterative ensemble smoother approaches and ensemble mbbds in general, the
ensemble size governs the accuracy of the parameter estimas obtained. However,
employing large ensembles may be computationally infeadid in applications with
expensive forward solvers. Here, we reduce the computatical cost of using large
ensembles in iterative ensemble smoothing through the usef@ proxy solver. To correct
the proxy response for the corresponding model error, the lder of which can bias
posterior parameter estimates if left untreated, we propos a local basis approach. With
this approach, the discrepancy between the detailed and pray solvers is learned for
a subset of the ensemble and collected in a dictionary that gmws with each iteration.
For each ensemble member, theK-nearest neighbors in the dictionary are employed to
build an orthonormal basis which is used to identify the modeerror component of the
residual by projection. The proposed methodology reduceshe effects of over tting the
data with the proxy solver, but may lead to under tting of thedata in the absence of a
suf cient number of dictionary entries, meaning that the nmber of ensemble members
relative to the number of detailed-solver runs cannot be irated arbitrarily. We present
our approach in the context of the ensemble smoother with muiple data assimilations
(ES-MDA) algorithm, and show its successful application ta high-dimensional synthetic
example that involves crosshole ground-penetrating radgiGPR) travel-time tomography.

Keywords: ensemble methods, ES-MDA, proxy model, model error, i nversion, uncertainty quanti cation

1. INTRODUCTION

Inverse problems commonly involve computationally expensivevérd solvers and large
numbers of unknown parameters that are spatially distributeadr risk assessment and e ective
environmental decision making, parameter uncertainties exquired. These can be obtained
through, for example, Bayesian stochastic inversion wherdte corresponding posterior
distributions are typically sampled using Markov-chain-Moi@arlo (MCMC) methods. The
Bayesian-MCMC framework o ers the advantages of providing aural quanti cation of
parameter uncertainties, as well as the exibility to incompie probabilistic information about
priors and measurement errors into the inverse problegroljert and Casella, 200However,
depending on the forward solver and the dimensionality of thedel-parameter space involved,
it can be extremely computationally expensive. In many realdvapplications, for example,
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millions of forward model executions may be required to dbta upon pairs of detailed and proxy solver runs corresponding
meaningful posterior statistics with Bayesian-MCMC metbod to di erent sets of model parameters. In the rst approach,
(Ruggeri et al., 20)5Although several recent modi cations to these pairs are used to construct a global error model, whose
the standard Metropolis-Hastings algorithm have signi dgnt statistics are incorporated into the estimation procedumetigh,
improved the computational e ciency of MCMC (e.gHaario  for example, the Bayesian likelihood function (e.gaipio
et al., 2001; Hansen et al., 2012; Cotter et al., 2013; Chaln et and Somersalo, 2007; Lehikoinen et al., 2010; Schoups and
2016; Vrugt, 2016; Beskos et al., 201iffese modi cations are Vrugt, 2010; Evin et al., 2014; Hansen et al., 2014; Smith
often still not enough to make such methods practically felasi et al., 2015; Piccolo and Cullen, 2016; Oliver and Alfonzo,
for many inverse problems. 2019. Although this can be highly e ective in some cases, we
One way to signi cantly reduce the computational cost ofhave found that the model errors for many inverse problems
stochastic parameter estimation is to employ ensemble-basedhibit complex behavior that cannot be described in the
methods. With such methods, an initial ensemble of modekame way over the entire parameter space. With the second
parameter sets, drawn from the Bayesian prior distributionapproach, the aim is to construct a local error model, which
is updated into posterior samples taking into account theis generally accomplished through some kind of interpolation
available data. The most popular ensemble-based method is thetween known model-error realizations (e.ggnnedy and
ensemble Kalman lter (EnKF)Hvensen, 1994, 200ahich  O'Hagan, 2001; Xu et al., 2014; Josset et al., 2015a; Cuj et al.
was developed as a robust sequential data-assimilationiteeh ~ 201§. Although doing this e ectively addresses the non-global
A modi cation of the EnKF for solving parameter-estimation nature of the model errors, it is implicitly assumed that the
problems is the ensemble smoother (ES), whereby all awailabhodel-response surface is smooth enough for interpolation
data are assimilated in one global update step rather thato be e ective, and problems may arise in regions of the
sequentially. The underlying equations for both the EnKkl an model parameter space that are not well-sampled by the
ES may be derived from Bayesian statistics (eay,Leeuwen, model-error realizations.
2001; Evensen, 2007To deal with non-linear problems, iterative ~ Recently,Kopke et al. (2018presented a new approach to
ensemble techniques have been proposed (@aynolds et al., account for model error arising from the use of proxy forward
2006; Emerick and Reynolds, 2012b; Elsheikh et al., 20X8aEto solvers in Bayesian-MCMC inversion, whereby information
and Elsheikh, 20)5The ensemble smoother with multiple data about the error is gathered during the inversion procedure
assimilation (ES-MDA) is one of such techniques, in which theéhrough occasional runs of the proxy and detailed solvers
single update step of ES is replaced with a number of smalléogether, the results of which are stored in a dictionary. In
updates Emerick and Reynolds, 2002d he large advantage of contrast to the existing methods mentioned above, the approac
ES methods over MCMC for stochastic parameter estimation isf Kopke et al. (2018focuses on identifying by projection the
that the executions of the forward solver can be paralleliveal model-error component of the residual through the construntio
straightforward manner. of a local orthogonal model-error basis, rather than on the
Despite the computational advantages of ensemble methodgvelopment of a global or local error model. In this paper, we
over Bayesian-MCMC approaches, it is well known thatdapt this methodology for use with ES parameter-estimation
large ensembles are required for the most accurate parametaethods. In particular, we incorporate the related ideas thi®
estimates and predictions (e.gBuizza and Palmer, 1998; ES-MDA algorithm, where for each ensemble member, the local
Chen and Zhang, 2006; Evensen, 200& a result, we still basis is created using thénearest-neighbor (KNN) entries in
have with ensemble methods the possibility that, for highthe model-error dictionary. Doing this enables us to accelyat
dimensional inverse problems involving expensive forwardolve the parameter-estimation problem using large ensembles
solvers, accurately sampling from the posterior distribatio while at same time reduce computational costs through the use
will remain computationally prohibitive. In such cases, theof a proxy solver.
only solution is to employ an approximate forward solver or  The paper is organized as follows: In section 2 we begin with
proxy. Generating such a proxy can be achieved by simplifying short review of ensemble methods followed by the presemtati
the physics of the problem (e.gScholer et al., 2012; Jossetof our approach to account for model error. In section 3, we then
et al., 2015a)h by coarsening the forward model discretizationshow the results of applying this methodology to the geophysical
(e.g.Arridge et al., 2006; Calvetti et al., 20,1@r by constructing inverse problem of estimating spatially distributed radar-evav
a surrogate model based on, for example, polynomial chasdowness from synthetic crosshole ground-penetrating rada
expansion, Gaussian processes, or neural network techniquEPR) travel-time data. In this regard, results are compared
(e.g.,Khu and Werner, 2003; Rasmussen and Williams, 200&yith inversions based on the standard ES-MDA procedure for
Marzouk and Xiu, 2009; Goh et al., 2Q1However, using a proxy reference. Based on these ndings, we discuss in section4 ho
forward solver in the inversion introduces model error, whi our results compare with standard MCMC sampling, the choice
has the potential to strongly bias posterior statistical@y et al., of parameters in our algorithm needed to provide an optimal
2013 and can lead to highly overcon dent estimates of the wrongbalance between computational e ciency and accuracy, as well
parameters (i.e., posterior collapse) if not accounted for. as how the inversion results progress as a function of ES-MDA
To address the issue of model error arising from theiteration. Finally, in section 5, we conclude with some gahe
use of proxy models in stochastic inversion, researcherge hacomments on the methodology and provide directions for future
typically focused on two general approaches, both of which relgesearch in this domain.
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2. METHODOLOGY 2.2. The ES-MDA Algorithm
2 1. Ensemble Methods ES o ers an e cient tool to solve parameter-estimation problem

: . under the assumptions that the prior parameter distribution
In a generic formulation of the ensemble Kalman Iter (EnKF),

h del n at d imilati . . is Gaussian and the forward operatéf ) is linear. If these
the model state vectoy” at data assimilation time step IS .qngitions are not satis ed, then ES can lead to unacceptable
updated after the state forecast step. The update from forécashata matches and unphysical resulsatonsen et al., 2009

to analysisais carried out using the following equatiofnerick To deal with this issue, we focus in this paper on a recent

and Reynolds, 2017a development byEmerick and Reynolds (2012anamely the
ensemble smoother with multiple data assimilation (ES-MDA).
y]-”'a D yjn’f C K”(dgert H(yj”'f)), (1) With this approach, one standard ES step, which is comparable to
a single Gauss-Newton iteration when maximizing the posterior
probability of the model parametersgrantola, 200§ is replaced
by a number of smaller update steps (or assimilation iteragjon
based on a Kalman matrix and perturbed data vector that are
recalculated at each iteration. In order to correctly sanfpben
) ) the posterior distribution, the measurement-error covace
Here,j D f1,2, ~-Ne, Wherene is the number of ensemble iy ¢ must be in ated in this procedure. Typically this is
membersCQ’D is the calculated cross-covariance matrix betweedone by scalingCp by the number of assimilation iterations;
the forecast state vectgjrr"f and the predicted datd]' D H(yj”'f) however, more generalized in ation coe cients may be used
(Emerick and Reynolds, 20124or linear forward solvers, the
. . ; . ES-MDA algorithm is theoretically equivalent to standard ES
calculated auto-covariance matrix of the predicted d&ig;is (Emerick and Reynolds, 2012IFor non-linear problems, it can

the convar!ance matrix of the observed-data measurementsc—:rr . be shown that the methodology has links to annealed importance
and dpe,¢ is the vector of perturbed observations. The latter is

. C non n sampling Gtordal and Elsheikh, 20).5
gggae'p\feddl:ji?agdpe” N (dgps Cp). wheredg,; denotes the Algorithm 1 outlines the steps involved in the ES-MDA

. - rocedure where, for simplicity, the measurement-error
The ensemble smoother (ES) is a variation of the EnKF upda% s

. ' . . ovariance matrix is assumed diagonal with entries and
formula presented in Equations (1) and (2) that is speci cally, g

f lated f i timat bl Th he corresponding in ation coe cient is set to equal the
ormuiated for parameter estimation problems. € 9eNerql mber of assimilation iterationsjier. TO estimate the inverse
forward problem

of matrix (Cpp C Cp) we use the truncated singular value
decomposition (TSVD) and retain 99% of the total energy of the
dobsD F(Mirue) C ¢ () singular valuesgmerick and Reynolds, 2012a

with Kalman matrix

f f
K" D Cyp(Cop C CP) . @

obtained through the observation operatbf( ); CB’fD is the

links a set of observed datdy,s to a set of “true” model
parametersmyye through the forward operatorF() with Algorithm 1: Standard ES-MDA

measurement errorsy N (0,Cp). The corresponding ES 2. i
L ' 1setG D “I; D nier
update equation is given bfEnerick and Reynolds, 2012a 2 draw prior ensemblem containingne sets of model
parameters
m? D mjf C K(dpert F(mjf)), (4) sforiD1,..nje do
4 | perturb observationslpert N (dops  Cp)
with 5 fOI’j D1,..nedo
6 | | computepredicted datalj D F(m;)
f f 1 7 | end
KD Cyp (Cpp € Co) - ®) 8 | computeKalman matrixk D Cyp (CoppC  Cp) !
‘ 9 | forjD1,...nedo
Here, m; and mja denote the forecast and analyzed model-1o computeresidualrj D dpert  dj
parameter vectors, respectively, which correspond to an update updateensemblen; D m; C Kr;
from prior to posterior; C{\AD is the cross-covariance matrix 12 | end

betweermjf and the predicted datd; D F(mjf); chy isthe auto- 13 end

covariance matrix of the predicted data; aigtt N (dops Cp)

is again a vector of perturbed observations. The idea with

equations (4) and (5) is that, after de ning an initial paratee

ensemble by drawing from the Bayesian prior distributiore th 2.3. Model Error

ensemble members are updated to represent samples from tkiéhen working with a perfectly known forward solve¥( )
posterior distribution in a single analysis step that incorges in the ES-MDA procedure outlined above, the residual
all of the available data. corresponding to thgth ensemble membean;, which quanti es
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the mis t between the perturbed observations and the predicte the current model-parameter dictionarp™ is searched for

(forward-calculated) data, is given by the K-nearest-neighbor (KNN) parameter sets hg using a
standard Euclidean distance measure (édgstie et al., 2009
rj D dpert  F(my) An orthonormal basisB; for the model error atm; is then
D F(mtrue% F(mj? C Q, (6) constructed from these parameter sets using the Gram-Schmidt
| technique (e.gStrang et al., 1993We assume in our work that

P omponent the data-measurement-error and parameter-error componehts

the residual are orthogonal to the model-error componentd an
where Q denotes the sum of the measurement errors andherefore cannot be well represented by the basis. An estimate
perturbation noise. In the case whemg D myye, we see from of the model error s thus obtained by projecting the residual
Equation (6) that the parameter-error term, which represdhes  onto B;
component of the residual related to being at the wrong set of
model-parameter values, will be zero and that the residuatgn QD B; BjT rj. (8)
will tend to be minimized. In the case where a proxy forward
solver ) is used in the ES-MDA algorithm, however, the latter This result, which represents the details missing in the proxy
does not generally hold true because solution, is then added to the proxy response to obtain a coectc
forward response
rj D dpert qmj)

D F(mue) AM)C Q foéce ©)
D r(mtrue}7 F(mQ C r(mj) i qmjf C Q. (7)  with corresponding corrected residual
parametereror” - modetertor 0D dport @ 10)

Indeed, the presence of an additional model-error component irhe corrected forward responses for all of the ensemble mesnbe
Equation (7) compared to Equation (6) means that the residuadre used to compute the corrected Kalman matrix
energy may be minimized for model parameter vectwoisthat

are substantially di erent frommyye, as such parameter sets KD Cy;9 (CgeC Co) * (11)
well tend to compensate for the model errors. As mentioned
previously, this can lead to strongly biased and overcontdenwhich is used with the corrected residuals to update the elvem
posterior statistics. Under the stated assumptions and with appropriate choices
In order to deal with model error in the ES-MDA procedure of ne, ng, and K, Algorithm 2 allows us to e ectively reduce
arising from use of a proxy solver, we build on the methodologthe computational cost of ES-MDA when considering large
presented irkKopke et al(2019 for Bayesian-MCMC inversion, ensembles through the use of a proxy solver. The dimenstignali
which focuses on identifying the model-error component ofof the parameter-estimation problem and the dierence in
the residual using a projection-based method. We refer theomputational cost between the proxy and detailed forward
reader to that paper for details beyond those given heraolutions determine how much computational bene t is dedve
Algorithm 2 outlines the steps involved in our modi ed ES-MDA from this methodology. We refer the readerdpke et al. (2018)
methodology, again assuming thatD nier andCp D 21 foradetailed discussion of the orthogonality assumptioimiaen
for simplicity, wherel is the identity matrix. In addition we the model-error and other components of the residual.
introducengy, de ned as the number of detailed solver runs used
to learn about the model error, and setitto avalue tolesatha 3 APPLICATION TO CROSSHOLE GPR
equal to the number of ensemble membpgs
Inthe modi ed ES-MDA algorithm, initial ensemble members TOMOGRAPHY
m; are drawn from the prior parameter distribution and the 3.1. Experimental Design and Forward
corresponding predicted da@ D Qmj) are computed using Models
the proxy solver. In each assimilation iteration, a subset ofs an example, we now apply our modi ed ES-MDA algorithm
the ensemble members having sixgis randomly chosen, for with model-error correction to the crosshole GPR travel-
which the detailed forward responses D F(m;) are also time tomography inverse problem. A transmitter and receiver
calculated. The resultingy model-error vectors (i.ed él?)and antenna, located in two adjacent boreholes, are used torobtai
corresponding parameter setg are stored in the dictionari3F  the travel times of radar energy between the holes for di ¢éren
andDM, respectively. ADM and DF are further enriched with antenna positions. These times are linked to the spatial
ng entries in each ES-MDA iteration, more detailed informationdistribution of subsurface radar-wave velocity, the eation of
about the model error around the posterior solution is gattger ~ which is the goal of the inverse problem. Crosshole GPR travel
For each ensemble memlray, the model-error componentof time tomography represents an excellent test problem for our
the residual is identi ed and used to correct the proxy resgmns purposes because (i) it has been extremely well-studied, most
in order to mimic the detailed forward solver. To this end, notably from a stochastic inverse standpoint (e@rpux et al.,
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Algorithm 2: ES-MDA with model-error correction be considered, which means that the ray paths that connect
transmitter and receiver locations are assumed to be sttaig
lines (e.g.,Cordua et al., 2008 The latter approximation is
typically applied in cases where contrasts in velocity do not
exceed 10%; however it is only truly valid when the subsurface
is homogeneous. Here, we consider the eikonal equation

1setG D 21; Dnijer;ng nelDO

2 draw prior ensemblen containingne sets of model
parameters

s foriD 1,...njer do

4 pelr turb ogservatéonsipertf N ((:]ODSD 1CD) to be our detailed forward solveF() and the straight-ray
5| se (_actran om subsem, of m with r --Nd approach to be our proxy solve® ). This choice was made
6| foriD1,..ne dq . for demonstration purposes, as it allows us to compare the
! computepredicted data using proxy solver results of ES-MDA inversions obtained using our approach to
@D Rmj) those obtained using standard ES-MDA, as well as MCMC,
8 ifm; 2 my then based on the detailed solver alone. That is, the eikonatisalu
9 IDIC1 _ _ ) is fast enough to allow it to be used in the standard ES-MDA
10 computepredicted data using detailed solver algorithm with a large number of ensemble members, as
di D F(m) well as for MCMC posterior sampling. Note that, instead
11 enrich model-error dictionanDF D d, & of estimating directly velocity from GPR travel times in our
12 enrich corresponding model-parameter dictionary  analysis, we focus on the estimation of subsurface slowitess (
D|M D m; reciprocal of velocity) which makes the straight-ray fordiar
13 end problem linear.
14 | end The survey con guration for our synthetic experiments
15 | forjD 1,..nedo co_nsists of two bqreholes that are 8-m deep and.fl-m apart
16 searchdictionaryDM for K-nearest neighbors toy, (Elggre 2. Transm.|tter and receiver antenna positions are
17 take corresponding entries frorE and place in set distributed equally_m depth every 0.2 m down the left a_nd tigh
DK(m) bort_eholes, respectlv_ely. Sengl_lng a rgdar pulse from all t_rath
o . . K positions to all receiver positions yields 1,600 travel-tina¢ad
18 build orthonormal basid having spafD™ (m;)g We consider a pixel-based parameterization of the subsurface
19 computeresidualrj D dpert & whereby the region between the boreholes by discretizesl int
20 project rj onto B to estimate model error 20 40 square cells of constant-slowness and side length
@D B BT r 0.2 m. The synthetic “true” subsurface and initial prior emdxe
21 correctproxy respons@ D @C e members are generated by sequential Gaussian simulatiog usi
22 | end the GSLIB software packagedutsch and Journel, 19RZThe
23 | computeKalman matrixiQD Cue CgeC  Cp) 1 mean slowness is set_to 10 ns/m and an gxponential auto-
24 | forjD 1,..nedo covariance kernel ha\_/lng a standard. deviation qf 1.7 ns/m
- computeresidual D dper @ is assumed, with horlzontgl and vertical correla_t|on ldregt _
of 6 m and 1.5 m, respectively. The corresponding synthetic
2 updateensemblen; D m; C 'Q? observed data are generated by solving the eikonal equatidn
27 | end adding measurement errors, the latter of which are simalate

28 end Gaussian random noise having covariance ma@gxD 21 with
standard deviation D 0.2 ns.

3.2. ES-MDA Results

2007; Looms et al., 2008; Scholer et al., 2012; Hansen et @ur goals in this analysis are to (i) study the e ects of model
2013; Linde and Vrugt, 20)Jii) it involves a high-dimensional error on ES-MDA inversions; (ii) investigate the in uence of
and spatially distributed set of model parameters that must béhe ensemble size on the accuracy of the results obtained;
estimated; and (iii) the forward problem can be solved in aetgr and (iii) explore how the parameters of our modied ES-
of di erent ways using di erent physical approximations. MDA procedure with model-error correction can be chosen to

GPR travel times are linked to the spatial distribution ofprovide an optimal balance between computational e ciency
electrical properties between the two boreholes, predomlpantand accuracy. To this end, we compare parameter-estimation
the dielectric permittivity, through Maxwell's equations. results for di erent numbers of ensemble members when (iyéhe
Numerical solution of these equations represents the moss no model error, meaning that the detailed (eikonal-edprat
accurate means of calculating the travel times, but at timeesa forward solver is used within the standard ES-MDA procedure
time it is highly computationally expensive. To reduce the(Algorithm 1); (ii) model error is present but not accounted
computational cost, the physics of the electromagnetic waver, meaning that the proxy (straight-ray) forward solveumsed
propagation can be approximated using ray theory, wherebwithin the standard ES-MDA procedure; and (iii) model error
the e ects of frequency are ignored and we solve the eikonas present and accounted for through the use of Algorithm 2. In
equation (e.g.Nowack, 199 To decrease the computational each case, we examine the combined results from 10 ES-MDA
cost even further, the straight-ray approximation may alsanversions obtained using di erent initial ensembles amg,; D
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all ES-MDA runs in order to visually compare them with the true
slowness distribution.

Figure 2 summarizes the parameter-estimation results
obtained for the case where there is no model erroFigure 2A
we observe that the average RMS travel-time mist decreases
consistently with larger numbers of ensemble members toward
the expected value of D 0.2 ns which re ects the prescribed
data errors. After around 320 ensemble members, adding
more members is seen to only slightly further improve the
results.Figure 2B shows that the slowness mis t also decreases
consistently as a function of ensemble size. This is supported
by Figure 2C which shows that the mean slowness elds
become increasingly detailed and similar to the true sulzsaf
distribution as the number of ensemble members increases.
The increasing overall accuracy of the ES-MDA results with
larger ensemble size is based on the reduction of sampling
errors following the central limit theoremEvensen, 2007
We can conclude that larger ensembles combined with the
detailed forward solver enable us to obtain more reliable

-h (A XA R A AR R R R R A R A R R R R AR A dXqX,]

1 2 3

posterior parameter estimates, but at the cost of signi cantly
X [m] greater computational e ort when the detailed solver is
computationally expensive.
FIGURE 1 | Considered crosshole GPR survey con guration with borehole Figure 3 summarizes the parameter-estimation results
shown as black lines. Transmitter and receiver positions arshown as white obtained for the case where model error is present but not
dots and distributed every 0.2 m down the boreholes. accounted for. InFigure 3A we observe that, in accordance

with Figure 2A, the travel-time mist consistently decreases

with larger ensemble size. However, it approaches a stable
8 assimilation iterations. Ensemble sizesi9D 20, 40, 80, 160, value that is well above the target value oD 0.2 ns, because
320, and 640 are considered in our analysis. the presence of model error does not allow data tting to a

To assess the quality of the inversion results, we consider t level that is in accordance with the prescribed data errors.

metrics. The average root-mean-square (RMS) travel-timetmis In addition, unlike in Figure 2B the slowness mist now
which quanti es globally the ability of the posterior enselmb decreases only untihe D 40, after which it increases again
to represent the observed data, is de ned for ES-MDA ifun (Figure 3B). Forne 40, we do not have enough ensemble

(iD1,2,...,10) as follows: members to resolve the details of the posterior distribution
and therefore only the posterior mean can be represented in
1Xe 1 the parameter estimation result<Cljen and Zhang, 2006
MITD = p=— dops dij (12) : -
" e o T obs  Hij 2- Conversely, whene > 40, the solution moves toward a biased
j

posterior distribution. That is, with more ensemble members
wherent is the number of travel-time data. For the case Wheréhr? Far:(;ng:ersé r:avg themablh\tly rtottcgmraeni?rt]e f[?]r tthe I;n(t)td(ral
model error is absent and data errors are zero-mean and (Eaussg to a ich € ahg ec;:ct)) tetho er-te ,t e% gt ata et(teh
distributed with covariance matri€p D 21, the expected value ta a m‘g ¢ fls ac |e\ée| Tl:1 € pararlne ers do T(;)Freprezecn €
of M will be . Note that, in the case where model error is rltlle su SLt" ace Two eih € n:jezlan sown_'letssde |gg_1re in th
present but not accounted for, the detailed forward solggrin aflow us fo see Now fhe model error infroduces bias n the

. i ) i parameter-estimation results ag increases; strong artifacts are
equation (12) is replaced with the proxy sol‘@r.

o ) clearly observed in these elds for ensemble sizes larger tha
We also consider in our analysis the average RMS slownegg,

mis t, de ned by Finally, we examine the inversion results obtained for the

e case where model error is present and accounted for through
MSD 1 pl_ Myue  Mij . (13) our modied ES-MDA _approach. We rst co_nside_r inversions
Ne iD1 nT whereng D 20 detailed solver runs per iteration are used

to build the model-error dictionary andK D 20 KNN from
whereng is the number of slowness cells. This metric quanti esthis dictionary are used to construct the model-error basis f
how well the posterior ensemble captures the true underlyingach ensemble member. The corresponding results are shown in
model parameters, and can only be employed in the case &igure 4. Note that, in the case withe D 20, the detailed solver
synthetic data where the true subsurface slowness disivifbis  is executed for each ensemble member, which correspondsgto th
known. In addition to the two metrics in Equations (12) and3)1 standard ES-MDA procedure in Algorithm 1. IRigures 4A,B
we plot the mean slowness elds over all ensemble members ame see that both the travel-time and slowness mist decrease
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FIGURE 2 | Results of 10 standard ES-MDA runs for the case of no model eor. Shown as a function of the number of ensemble membersne, are (A) box plots of
the average RMS travel-time mis t [ns]{B) box plots of the average RMS slowness mis t [ns/m]; andC) the mean posterior slowness elds [ns/m]. Added to the box
plots are the mean (circles), and minimum and maximum valuggrosses). The dashed horizontal line i(A) represents the expected value of the travel-time mis t
assuming that the residuals follow the prescribed Gaussiadistribution for the data errors.

from ne D 20 until they reach a minimum at around 80—160 results compared to standard ES-MDA based on small ensembles
ensemble members. This demonstrates that the considerati@and the detailed forward solver. These results are con rrimed

of larger ensembles through use of a proxy solver combineBligure 4C where we observe that the bias is largely removed
with our model-error correction can lead to more accuratefrom the mean slowness elds fare 160 in comparison to
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FIGURE 3 | Results of 10 standard ES-MDA runs for the case where model eor is present but not accounted for. Shown as a function of tk number of ensemble
members, ne, are (A) box plots of the average RMS travel-time mis t [ns](B) box plots of the average RMS slowness mis t [ns/m]; andC) the mean posterior
slowness elds [ns/m]. Added to the box plots are the mean (cirtes), and minimum and maximum values (crosses). The dasheafizontal line in(A) represents the
expected value of the travel-time mis t assuming that the resluals follow the prescribed Gaussian distribution for thelata errors.

Figure 4C However, for ensemble sizes larger than around 16@alculations for the model error to be well represented in the
the travel-time and slowness mist are seen to again in@geasdictionary, meaning that projection onto the model-errordis
meaning that the data become under- tted. That is, the enslem will not properly identify the model-error component of the
size becomes too large compared to the number of detailedisolwresidual. This has the e ect of introducing bias into the insien
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FIGURE 4 | Results of 10 runs of our modi ed ES-MDA algorithm to accountdr model error, with 20 detailed solver calculations and 20 KN. Shown as a function of
the number of ensemble membersne, are (A) box plots of the average RMS travel-time mis t [ns]{B) box plots of the average RMS slowness mis t [ns/m]; and(C)
the mean posterior slowness elds [ns/m]. Added to the box plos are the mean (circles), and minimum and maximum values (@ses). The dashed horizontal line in
(A) represents the expected value of the travel-time mis t assurimg that the residuals follow the prescribed Gaussian distyution for the data errors.

results, which is clearly seen in the mean slowness elds iK D 40 KNN to build the model-error dictionary and construct
Figure 4Cwhenne > 160. the model-error basis, respectively. Here, whenD 40, the

To explore the latter ndings, we consider again Algorithm 2,detailed solver is executed for each ensemble member, which
but this time usingnyg D 40 detailed solver runs per iteration and again corresponds to the standard ES-MDA procedure. Similar
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FIGURE 5 | Results of 10 runs of our modi ed ES-MDA algorithm to accountdér model error, with 40 detailed solver calculations and 40 KIN. Shown as a function of
the number of ensemble membersne, are (A) box plots of the average RMS travel-time mis t [ns]{B) box plots of the average RMS slowness mis t [ns/m]; and

(C) the mean posterior slowness elds [ns/m]. Added to the box plos are the mean (circles), and minimum and maximum values (@ses). The dashed horizontal line
in (A) represents the expected value of the travel-time mis t assunmg that the residuals follow the prescribed Gaussian distyution for the data errors.

to before, we observe iRigures 5A,Bthat the travel-time and of this minimum due to the limited discretization, we see tha
slowness mist decrease frome D 40 until a minimum is it falls somewhere around 160 ensemble members. After the
reached. Although it is di cult to determine the exact positt  minimum value, the travel-time and slowness mist are again
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seen to increase and the data become under- tted. This iehav ~ In comparing the posterior realizations ifrigures 6A,B
is well re ected in the mean slowness eldskigure 5C which  we see that they are highly similar, which suggests that ES-
show good agreement with the true eldfog 320, but clearly MDA based on the detailed forward solver and using a large
contain model-error-related artifacts wheg D 640. number of ensemble members allows for adequate sampling of
the Bayesian posterior distribution. The corresponding ded
deviation images generally show a pattern that re ects the
4. DISCUSSION degree of ray coverage; regions of higher slowness contain a
smaller ray density. However, the ES-MDA solution is seen to
We saw above that use of the modied ES-MDA approactcontain more variability, which may arise because the 140,00
described in Algorithm 2 can allow for a signi cant reduaticn ~ MCMC iterations utilized were not enough to adequately exglor
posterior bias when employing a proxy forward solver comparethe posterior space. In examining the stochastic realization
to the standard ES-MDA procedure. This o ers the possibilityin Figure 6C the proxy-related bias in this solution is clearly
of considering large ensemble sizes within ES-MDA, which caapparent. Here, the symmetric pattern of variability re ects
be computationally prohibitive in the context of an expensivevariations in ray density that are controlled solely by tinéesna
detailed forward solver. One issue requiring further disgion, locations in the straight-ray case. Finally, in comparing th
however, is the balance between (i) the number of ensembtesults inFigures 6D,Ewith those inFigure 6A, we see that our
members considerede, Which in the case of no model error modi ed ES-MDA algorithm largely removes the proxy-related
controls the accuracy of the results obtained; and (ii) thenber  bias and allows for the generation of posterior samples that are
of detailed solver runsy, which determines the success of theclose in appearance to the MCMC solution, which again valglate
model-error correction. We saw iRigure 4that, whenng D 20  our approach. These samples do, however, show a slightly
detailed solver runs per iteration were considered inthe neatl  higher degree of variability with less correlation compated
ES-MDA procedure, use of ensemble sizes between 40 and 1EQures 6A,B with the ngy D 40 solution providing a better
allowed for an improvement in parameter estimates comparechatch than theny D 20 solution. As discussed above, with a
to standard ES-MDA based on the detailed solver with D xed number of detailed solver runs per iteration, there is an
20. Whennyg D 40 detailed solver runs per iteration were upper limit to the number of ensemble members that can be
considered, on the other hand, a corresponding improvemeng ectively considered in our procedure, which in turn may not
was found for ensemble sizes between 80 and 320. Thesesreshi enough to characterize exactly the posterior distributisse(
suggest that, at least for the application presented in this papdtigure 2). More accurate results would thus likely require greater
Algorithm 2 can be successfully applied only for ensemblesumbers of detailed solver runs to allow for an increase ia th
having size less than 8 times the number of detailed solves ru ensemble size. The higher degree of variability in thesealtees
per iteration. Past this number, there will not be enough &sgr may also re ect imperfect removal of the model error, or the
in the model-error dictionary to allow for an accurate caction  lesser number of samples used to compute the point-by-point
of the model error for all ensemble members, and the bene tsnean and standard deviation.
of using an approximate solver with model-error correction will  Lastly, we wish to elaborate on the number of internal ES-
be compromised. Further exploration of these ndings in theMDA assimilation iterations considered in our approach, which
context of other inverse problems is required. was held constant at a value ofey D 8 for all of the results
Another issue in need of some discussion is how the results gresented section 3.2. To this end, we studyFigure 7 the
using the standard and modi ed ES-MDA algorithms presentedravel-time and slowness mist as a function of iterationr fo
in Figures 25 compare with samples from the “true” posterior an ensemble size afe D 160 when (i) no model error is
distribution, the latter of which we assume to be availabtetigh  present; (ii) model error is present but not accounted for; and
MCMC sampling based on the detailed forward solver. Tdiii) model error is present and accounted for using D
this end, we show irFigure 6 ve randomly chosen posterior 40 detailed solver runs per iteration and D 40 KNN.
slowness realizations obtained via MCMC sampling based owe observe overall that the rst assimilation iteration hae
the eikonal equation Rigure 6A); standard ES-MDA based largestin uence on reducing the travel-time and slowness m
on both the eikonal equation and straight-ray approximationfrom prior to posterior. This arises because of the linearity
(Figures 6B,G; and our modi ed ES-MDA procedure withy D of the proxy (straight-ray) solver and the weak non-linegarit
20 andng D 40 (Figures 6D,B. The point-wise posterior mean of the detailed (eikonal) solver in our travel-time tomograph
and standard deviation, computed over all available sampleapplication. Indeed=merick and Reynolds (2012pjoved that,
are also shown for reference. The resultsFigure 6A were for linear problems, one ES update using the measurement noise
obtained using the sequential geostatistical simulatemihhique covariance matrix is equivalent to multiple ES-MDA updates
(e.g.,Ruggeri et al., 20)pwhere after burn-in, the results of using the in ated covariance matrix. When using the detailed
140,000 MCMC iterations were thinned to provide 140 posteriosolver in the inversion where there is no model error, for
samples. FoFigures 6B—E the number of ensemble members exampleFigures 7A,Dshow a large decrease in travel-time and
considered was chosen to be the maximum investigated valsowness mist after one iteration and a slow decrease from
(ne D 640) for standard ES-MDA, whereas for our modi ed ES-iterations 2-8. In this case 4 iterations would be enough to
MDA procedure it was set equal to 8 times the number of detailedbtain similar parameter-estimation results to those ol
solver runs, as discussed above. using 8 iterations. When model error is present but not acdedn
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FIGURE 6 | Five randomly chosen posterior slowness realizations algnwith the point-wise mean and standard deviation [ns/m] obtaned via(A) MCMC sampling
based on the detailed eikonal solver (140 samples totaljB) standard ES-MDA based on the detailed eikonal solver withe D 640 (Figure 2 ; 6,400 samples total);
(C) standard ES-MDA based on the proxy straight-ray solver witine D 640 (Figure 3 ; 6,400 samples total);(D) our modi ed ES-MDA algorithm with 20 KNN,

ng D 20, and ne D 160 (Figure 4; 1,600 samples total); and(E) our modi ed ES-MDA procedure with 40 KNN, ng D 40, and ne D 320 (Figure 5; 3,200 samples
total).

for, we see inFigure 7B that a good travel-time data match Although it may be possible to arrive at these results in less
is achieved and no further improvement is observed after onéerations than the 8 considered in this paper, it is di cult to
iteration. However,Figure 7E shows that the corresponding know in advance how the combined approach of proxy solver
slowness mist is still large after one iteration compared toand model-error correction behaves in terms of the internal
Figure 7D, which arises because of overtting; that is, theES-MDA iterations.

inversion attempts to t the model error. Applying our proposed

method, we see ifrigure 7Cthat the travel-time mis t is again

primarily reduced in the rst iteration and behaves simikatlo 5 CONCLUSIONS

the case where no model error is presehig(re 7A). More

importantly, over-tting is signi cantly reduced Figure 7 We have presented in this paper an approach that builds on
and the slowness mist after only 4 iterations is similar tothe work of Kopke et al. (2018)n order to remove the bias
that seen inFigure 7B. This again conrms that employing associated with the use of proxy forward solvers in ES-MDA
our proposed approach can e ectively remove proxy-relatednversions. This allows for the consideration of larger enisie
bias and allow the ES-MDA procedure to yield results thakizes, which help to improve the accuracy of the parameter
are comparable to inversions when no model error is presentstimates obtained. Instead of constructing a local or gletrak
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FIGURE 7 | Box plots showing the results of 10 ES-MDA runs using 160 ensable members, as a function of the number of assimilation itations, for the cases of
(A,D) no model error; (B,E) model error present but not accounted for; and(C,F) model error present and accounted for using Algorithm 2 wit®0 detailed solver
calculations and 40 KNN. Added to the box plots are the mean (iccles), and minimum and maximum values (crosses). The dastl horizontal line in(A—C) represents
the expected value of the travel-time mis t assuming that theesiduals follow the prescribed Gaussian distribution fathe data errors.

model, our approach importantly aims to identify the model- error. In this case, the same model-error basis is constducte
error component of the residual during the ES-MDA procedure,in the rst iteration for each ensemble member. In subsequen
which is used to correct the proxy forward response. This isterations and with a growing dictionary, for each ensemble
accomplished through construction of an orthonormal model-member the KNN are used to extract local information about
error basis for each ensemble member and at each iteratiseba the model error from the model-error dictionary and a local
on a prescribed number of KNN entries selected from a modelmodel-error basis is calculated, respectively. Howeverctimice
error dictionary. The latter is created as the inversion meds, could be validated and optimized to improve the identi catioh
and thus no prior information about the model error is requite the model-error component of the residual. Further, we assume
before running the procedure. with our method that the latter is approximately orthogonal

With regard to the considered example problem of estimatingo the data-measurement and parameter-error components,
the spatial distribution of subsurface slowness from croksh which allows for its identi cation using a projection approach.
GPR travel times, we saw that our modi ed ES-MDA approachAlthough we have found this assumption to yield acceptable
allows us to obtain accurate posterior estimates charatieri results for a range of test problems examined so far, it rexguir
of large ensembles with a computational cost comparable to farther investigation.
small number of runs of the detailed forward solver. The Hssu
did show, however, that the success of the approach dependdJTHOR CONTRIBUTIONS
on the ratio between the number of ensemble members and the
number of detailed solver runs per iteration used to learnwtbo CK: developing ideas, setting up the codes and writing the
the model error. In particular, for the crosshole GPRtomgujria  manuscript; AE: discussing ideas and revising the manusdipt
example considered, this ratio should not exceed a value discussing ideas, revising the manuscript, and obtainimglifug
approximately 8. for the research.

Despite the successful application of our model-error
approach, there remain a number of topics that should bdeUNDING
investigated further. For example, in the work presented here
we set the number of KNN equal to the number of detailedThis work was supported by a research grant to JI from the Swiss
solver runs per ES-MDA iteration used to learn about the modeNational Science Foundation (number 200021_140864).
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