Distribution and morphological variation of colonies of the bryozoan Pentapora fascialis (Bryozoa: Cheilostomata) along the western coast of Italy

Lombardi, C; Cocito, S; Occhipinti-Ambrogi, A; Porter, Joanne

Published in:
Journal of the Marine Biological Association of the United Kingdom

DOI:
10.1017/S0025315408001525

Publication date:
2008

Document Version
Early version, also known as pre-print

Link to publication in Heriot-Watt University Research Portal

Citation for published version (APA):
Proof Delivery Form
Please return this form with your proof

Article number: S0025315408001525jra
Date of delivery: 11.03.08
Typesetter ref number: MBI08152
Volume and Issue Number: 88 and 0
Number of pages (not including this page): 7

Journal of the Marine Biological Association of the United Kingdom

Here is a pdf proof of your article for publication in the Journal of the Marine Biological Association of the United Kingdom. Please print out the file, check the proofs carefully and answer any queries.

Please return your corrections via email (no later than 4 days after receipt) quoting paper number in the header of the email message.

Please also ensure you specify page and line number of each correction required in your email and send to:

Executive Editor JUNA
Email: jmba@mba.eclipse.co.uk

Please return your completed and signed copyright transfer form and offprint form by post to the addresses given on each form.

Please note:

- You are responsible for correcting your proofs. Errors not found may appear in the published journal.
- The proof is sent to you for correction of typographical errors only. Revision of the substance of the text is not permitted, unless discussed with the editor of the journal.
- Please answer carefully any queries raised from the typesetter.
- A new copy of a figure must be provided if correction of anything other than a typographical error introduced by the typesetter is required

Thank you in advance.

Author queries:

Q1 Please provide submitted/accepted/published date details.

Typesetter queries:

Please return this form with your proof
Offprint order form

Journal of the Marine Biological Association (MBA) Volume: no:

Offprints
50 offprints of each article will be supplied free to each first named author and sent to a single address. Please complete this form and send it to the publisher (address below). Please give the address to which your offprints should be sent. They will be despatched by surface mail within one month of publication. For an article by more than one author this form is sent to you as the first named. All extra offprints should be ordered by you in consultation with your co-authors.

Number of offprints required in addition to the 50 free copies:

Email:

Offprints to be sent to (print in BLOCK CAPITALS):

Post/Zip Code:

Telephone: Date (dd/mm/yy): / /

Author(s):

Article Title:

All enquiries about offprints should be addressed to the publisher: Journals Production Department, Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU, UK.

Charges for extra offprints (excluding VAT) Please circle the appropriate charge:

<table>
<thead>
<tr>
<th>Number of copies</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>per 50 extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4 pages</td>
<td>£68</td>
<td>£109</td>
<td>£174</td>
<td>£239</td>
<td>£309</td>
<td>£68</td>
</tr>
<tr>
<td>5-8 pages</td>
<td>£109</td>
<td>£163</td>
<td>£239</td>
<td>£321</td>
<td>£399</td>
<td>£109</td>
</tr>
<tr>
<td>9-16 pages</td>
<td>£120</td>
<td>£181</td>
<td>£285</td>
<td>£381</td>
<td>£494</td>
<td>£120</td>
</tr>
<tr>
<td>17-24 pages</td>
<td>£131</td>
<td>£201</td>
<td>£331</td>
<td>£451</td>
<td>£599</td>
<td>£131</td>
</tr>
<tr>
<td>Each Additional 1-8 pages</td>
<td>£20</td>
<td>£31</td>
<td>£50</td>
<td>£70</td>
<td>£104</td>
<td>£20</td>
</tr>
</tbody>
</table>

Methods of payment
If you live in Belgium, France, Germany, Ireland, Italy, Portugal, Spain or Sweden and are not registered for VAT we are required to charge VAT at the rate applicable in your country of residence. If you live in any other country in the EU and are not registered for VAT you will be charged VAT at the UK rate.

If registered, please quote your VAT number, or the VAT number of any agency paying on your behalf if it is registered. VAT Number:

Payment must be included with your order, please tick which method you are using:

☐ Cheques should be made out to Cambridge University Press.

☐ Payment by someone else. Please enclose the official order when returning this form and ensure that when the order is sent it mentions the name of the journal and the article title.

☐ Payment may be made by any credit card bearing the Interbank Symbol.

Card Number:

Expiry Date (mm/yy): / Card Verification Number:

The card verification number is a 3 digit number printed on the back of your Visa or Master card, it appears after and to the right of your card number. For American Express the verification number is 4 digits, and printed on the front of your card, after and to the right of your card number.

Signature of card holder:

Amount (Including VAT if appropriate): £

Please advise if address registered with card company is different from above
Please read the notes overleaf and then complete, sign, and return this form to The Executive Editor, Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK as soon as possible.

JMBA: JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM

In consideration of the publication in **JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM**

of the contribution entitled: ..

by (all authors’ names): ..

1 **To be filled in if copyright belongs to you**

Transfer of copyright

I/we hereby assign to Cambridge University Press, full copyright in all formats and media in the said contribution.

I/we warrant that I am/we are the sole owner or co-owners of the material and have full power to make this agreement, and that the material does not contain any libellous matter or infringe any existing copyright.

I/we further warrant that permission has been obtained from the copyright holder for any material not in my/our copyright including any audio and video material, that the appropriate acknowledgement has been made to the original source, and that in the case of audio or video material appropriate releases have been obtained from persons whose voices or likenesses are represented therein. I/we attach copies of all permission and release correspondence.

I/we hereby assert my/our moral rights in accordance with the UK Copyrights Designs and Patents Act (1988).

Signed (tick one) □ the sole author(s)

□ one author authorised to execute this transfer on behalf of all the authors of the above article

Name (block letters) ...

Institution/Company ...

Signature: ... Date: ...

(Additional authors should provide this information on a separate sheet.)

2 **To be filled in if copyright does not belong to you**

a Name and address of copyright holder...

b The copyright holder hereby grants to The Marine Biological Association of the United Kingdom the non-exclusive right to publish the contribution in the journal and to deal with requests from third parties in the manner specified in paragraphs 4 and 5 overleaf.

(Signature of copyright holder or authorised agent) ...

3 **US Government exemption**

I/we certify that the paper above was written in the course of employment by the United States Government so that no copyright exists.

Signature: ... Name (Block letters): ...

4 **Requests received by Cambridge University Press for permission to reprint this article should be sent to (see para. 4 overleaf)**

Name and address (block letters) ..
Notes for contributors

1 The Journal’s policy is to acquire copyright in all contributions. There are two reasons for this: (a) ownership of copyright by one central organisation tends to ensure maximum international protection against unauthorised use; (b) it also ensures that requests by third parties to reprint or reproduce a contribution, or part of it, are handled efficiently and in accordance with a general policy that is sensitive both to any relevant changes in international copyright legislation and to the general desirability of encouraging the dissemination of knowledge.

2 Two ‘moral rights’ were conferred on authors by the UK Copyright Act in 1988. In the UK an author’s ‘right of paternity’, the right to be properly credited whenever the work is published (or performed or broadcast), requires that this right is asserted in writing.

3 Notwithstanding the assignment of copyright in their contribution, all contributors retain the following non-transferable rights:

 • The right to post either their own version of their contribution as submitted to the journal (prior to revision arising from peer review and prior to editorial input by Cambridge University Press) or their own final version of their contribution as accepted for publication (subsequent to revision arising from peer review but still prior to editorial input by Cambridge University Press) on their personal or departmental web page, or in the Institutional Repository of the institution in which they worked at the time the paper was first submitted, or (for appropriate journals) in PubMedCentral, provided the posting includes a prominent statement that the paper has been accepted for publication and will appear in a revised form, subsequent to peer review and/or editorial input by Cambridge University Press, in Journal of the Marine Biological Association of the United Kingdom published by Cambridge University Press, together with a copyright notice in the name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate). On publication the full bibliographical details of the paper (volume: issue number (date), page numbers) must be inserted after the journal title, along with a link to the Cambridge website address for the journal. Inclusion of this version of the paper in Institutional Repositories outside of the institution in which the contributor worked at the time the paper was first submitted will be subject to the additional permission of Cambridge University Press (not to be unreasonably withheld).

 • The right to post the definitive version of the contribution as published at Cambridge Journals Online (in PDF or HTML form) on their personal or departmental web page, or in the Institutional Repository of the institution in which they worked at the time the paper was first submitted, or (for appropriate journals) in PubMedCentral, no sooner than upon its appearance at Cambridge Journals Online, subject to file availability and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online edition of the journal at Cambridge Journals Online.

 • The right to post the definitive version of the contribution as published at Cambridge Journals Online (in PDF or HTML form) in the Institutional Repository of the institution in which they worked at the time the paper was first submitted, or (for appropriate journals) in PubMedCentral, no sooner than one year after first publication of the paper in the journal, subject to file availability and provided the posting includes a prominent statement of the full bibliographical details, a copyright notice in the name of the copyright holder (Cambridge University Press or the sponsoring Society, as appropriate), and a link to the online edition of the journal at Cambridge Journals Online. Inclusion of this definitive version after one year in Institutional Repositories outside of the institution in which the contributor worked at the time the paper was first submitted will be subject to the additional permission of Cambridge University Press (not to be unreasonably withheld).

 • The right to make hard copies of the contribution or an adapted version for their own purposes, including the right to make multiple copies for course use by their students, provided no sale is involved.

 • The right to reproduce the paper or an adapted version of it in any volume of which they are editor or author. Permission will automatically be given to the publisher of such a volume, subject to normal acknowledgement.

4 We shall use our best endeavours to ensure that any direct request we receive to reproduce your contribution, or a substantial part of it, in another publication (which may be an electronic publication) is approved by you before permission is given.

5 Cambridge University Press co-operates in various licensing schemes that allow material to be photocopied within agreed restraints (e.g. the CCC in the USA and the CLA in the UK). Any proceeds received from such licenses, together with any proceeds from sales of subsidiary rights in the Journal, directly support its continuing publication.

6 It is understood that in some cases copyright will be held by the contributor’s employer. If so, The Marine Biological Association of the United Kingdom non-exclusive permission to deal with requests from third parties, on the understanding that any requests it receives from third parties will be handled in accordance with paragraphs 4 and 5 above (note that your approval and not that of your employer will be sought for the proposed use).

7 Permission to include material not in your copyright

 If your contribution includes textual or illustrative material not in your copyright and not covered by fair use / fair dealing, permission must be obtained from the relevant copyright owner (usually the publisher or via the publisher) for the non-exclusive right to reproduce the material worldwide in all forms and media, including electronic publication. The relevant permission correspondence should be attached to this form.

 If you are in doubt about whether or not permission is required, please consult the Permissions Controller, Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 8RU, UK. Fax: +44 (0)1223 315052.
 Email: licol@cambridge.org.

The information provided on this form will be held in perpetuity for record purposes. The name(s) and address(es) of the author(s) of the contribution may be reproduced in the journal and provided to print and online indexing and abstracting services and bibliographic databases.

Please make a duplicate of this form for your own records.
Distribution and morphological variation of colonies of the bryozoan *Pentapora fascialis* (Bryozoa: Cheilostomata) along the western coast of Italy

C. LOMBARDI\(^1\), S. COCITO\(^2\), A. OCCHIPINTI-AMBROGI\(^1\) AND J.S. PORTER\(^3\)

\(^1\)Section of Ecology, Department of ‘Ecologia del Territorio’, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy, \(^2\)ENEA, Marine Environment Research Centre, PO Box 224, 19100 La Spezia, Italy, \(^3\)Institute of Biological Sciences, Edward Llwyd Building, Penglais Campus, University of Wales Aberystwyth, Aberystwyth, SY23 3DA, Wales, UK

Bathymetric range, substrate, colony density, colony size, and some zoarial features (form of the colony and branches) of the carbonate reef building cheilostome bryozoan *Pentapora fascialis* (Pallas) were recorded from 15 localities along the western coast of Italy. A wide range in the depth distribution of colonies was observed (11 to 60 m). Colonies occurred on several different types of substrate including gorgonians, sponges, bedrock and rock boulders, in current swept areas. Density was approximately 1 colony/m\(^2\). The most frequent colony size-class was 10 to 20 cm in diameter and was typically found growing epizoically on gorgonians. Ellipsoidal colony forms with expanded, foliaceous laminae were characteristic of larger colonies; these frequently grew on rock substrates. Subspherical colonies with a diameter less than 20 cm grew as epizoans and had a narrow branches structure. This information will help to inform decisions on taxonomic discrepancies within the Pentaporidae. In addition the data provide a useful baseline for the future estimation of a carbonate budget in the region.

Keywords: distribution, morphological variation, colonies, *Pentapora fascialis*, western coast of Italy

Submitted xx xx xxxx; accepted xx xx xxxx; published xx xx xxxx on CUP website

INTRODUCTION

The erect, robust-branching bryozoan *Pentapora fascialis* (Pallas, 1766) is a conspicuous subtidal species colonizing hard rock substrates, cobble and boulder areas and also other living species (gorgonians) from 1 m depth down to 60 m or more (Hayward & McKinney, 2002; Novosel et al., 2004). It occurs along the western coast of Britain as far north as the Hebrides and St Kilda, and eastwards along the English Channel, towards its limit in Sussex. The species occurs southwards into the western Mediterranean, with records in the Adriatic and Ionian Seas and along the coast of Tunisia (Hayward & Ryland, 1999; Cocito & Ferdeghini, 2001; Mustapha et al., 2002).

Colonial growth of *P. fascialis* begins with a small encrusting patch that develops into bilaminal sheets (Hayward & Ryland, 1999). These then go on to develop into an erect foliose structure, 20–30 cm in diameter, occasionally up to 80 cm (Cocito et al., 1998). Growth occurs in one of two ways, either by the formation of slender dichotomous branches or by the development of fused laminae, thus corresponding to the adeoniform and eschariform morphotypes respectively (McKinney & Jackson, 1989). This may be a response to different water flow directions and velocities (Cocito & Ferdeghini, 2000) or it may be due to genetic makeup.

There have been some recent taxonomic issues concerning *Pentapora*. It was considered by Gautier (1962) to comprise two different species, namely, *Pentapora fascialis* (Pallas) and *Pentapora foliacea* (Ellis & Solander). Zabala & Maluquer (1988) relegated these to subspecies and in 1999 they were merged into a single species, *P. fascialis*, by Hayward & Ryland. In this study we will refer to it as the single species *P. fascialis* but it should be noted that genetic research is currently underway in order to clarify the systematics of the different morphological types.

Pentapora fascialis is a distinguishing species of the ‘facies with large branching Bryozoa’ among the ‘bioconesoses of the coastal detritic bottoms’ of the circalittoral zone (Habitat Directive 92/43 EEC). Together with other bryozoans, the species lives on both hard substrata and as an epizoan on gorgonians within different facies of coralligenous bioconesoses (Pérès & Picard, 1964; Bellan-Santini et al., 2002). The high vulnerability of the habitat provided by *P. fascialis* and also its abundant associated diversity make its protection a priority (Bardat et al., 1997).

As with many bryozoans, *Pentapora fascialis* produces a heavily calcified skeleton that withstands current flow. The colonies can develop into large reef-like constructions that provide living space for other species, thereby increasing the diversity of habitats where they occur. An interesting recent development has been the use of *P. fascialis* colonies as a bioindicator of seasonal variations in temperature through...
analysis of zooid size variation. This method has been applied
in two studies (O’Dea, 2005; Lombardi et al., 2006). When a
colony is damaged or eventually dies its skeleton is deposited
into the sediment, providing a source of carbonate (Smith
et al., 1998; Cocito, 2004).

Current knowledge on the extent and distribution of car-
bonate build-ups and carbonate production by P. fascialis is
limited. The eastern Ligurian Sea and the karstic freshwater
springs in the north-eastern Adriatic Sea are the only
Mediterranean regions to have been studied so far (Cocito &
Ferdeghini, 2001; Cocito et al., 2004).

Analysis of the occurrence of P. fascialis and its growth
habits, along with an indication of how the morphology of
the species responds to different environmental conditions,
should increase our current understanding of its ecological
variability. Contemporary knowledge of the distribution of
this large carbonate producing bryozoan will provide new
data for the re-evaluation of the carbonate budget of the
Mediterranean.

The aim of our study was therefore to map the distribution
and morphology of the species P. fascialis along the western
coast of Italy. Observations were made of bathymetric range,
the substrates on which colonies develop, colony density and
size, and colony morphology (form of the colony and branches).

MATERIALS AND METHODS
The study was carried out during the period 2001 to 2003 in
15 localities along the western coast of Italy, extending from
the Ligurian Sea in the north to Sicily in the south (Figure 1).

SCUBA divers recorded a variety of data including the depth
range of P. fascialis colonies, the type of substrate on which
colonies lived (hard, artificial and other organisms), colony
size in diameter (<10 cm, 10–20 cm, >20 cm), colony
density (<1/m², 1–2/m², >2/m²), colony morphology
(sub-spherical or ellipsoidal) and the branching form
(expanded, foliaceous laminae or slender, dichotomous
branches) of colonies. The collection of this data was facilitated
by the setting out of three transect lines at each location. Five
replicate quadrats (1 m²) were randomly placed along each
transect line, then the number and size of colonies present
within each quadrat was recorded by pairs of divers on an
underwater recording slate.

Voucher colonies of P. fascialis with the different growth
forms and branching types were collected from each location
in order to establish a baseline for accurate taxonomic identi-
cation. These colonies were preserved by air drying following
careful transportation to the laboratory.

Frequency distribution graphs were constructed from the
data to analyse: (a) the size-classes of P. fascialis colonies
growing on different substrate types; (b) the size-classes of
colonies in relation to colony morphology; (c) the type of sub-
strate in relation to colony morphology; and (d) the colony
morphology in relation to branching type.

A multivariate descriptive method, the multiple correspon-
dence analysis (MCA), was used to analyse correlation
between variables. Data on colony size, colony density,
colony form and branch type were converted to a 0–1
matrix and treated separately for the two types of substrate
more frequently used by P. fascialis, organic and hard. As all
colonies growing on organic substrate displayed dichotomous
branches, branch form was not considered as a variable in the
MCA. Analogously, colony form was not considered in the
MCA on hard substrate, where all colonies had the ellipsoidal
form.

RESULTS
Distribution of P. fascialis colonies
The distribution of Pentapora fascialis colonies on western
Italian coasts was documented by SCUBA surveys. 517 colo-
nies were recorded in total, from a depth of 11 to 60 m
(Table 1). The shallowest colonies (11 deep) were found at
Tino Island and Cape Tegge, whereas at the Formiche
Islands and Cape Barbi P. fascialis occurred down to 60 m
depth.

Size-class distribution of colonies in relation
to substrate and colony morphology
The modal size-class of colonies recorded was the 10 to 20 cm
category of colony diameter with 87.7% of colonies being
assigned to this category (see Table 1). In 10 of the localities
surveyed, this size-class of colony was found commonly
growing as epizoans on gorgonians and, to a lesser extent,
colonizing hard substrates (Figure 2A). Colonies were
occasionally observed on artificial substrates. When growing
epizoically, the main substrate for attachment of colonies
of P. fascialis was provided by the living branches and the
bare axial skeleton of branches, specifically those affected by
necrosis on the gorgonian Paramuricea clavata (Risso).
Colonies were also recorded on living gorgonians of the
species Eunicella singularis (Esper) and Leptogorgia sarmen-
tosa (Linnaeus) and on the sponge Cucospongia scalaris
(Schmidt). These substrate preferences were recorded at
both Tino Island and Carega Shoal at Portofino. Hard
bedrock and rocky blocks were also common substrates for
Table 1. Study localities, number of colonies observed, depth-range of distribution, type of substrate (o, other organisms; h, hard; a, artificial), colony size, density, form (s, sub-spherical; e, ellipsoidal) and branch form (d, dichotomous; f, folicaceous). Li, Ligurian Sea; Ty, Tyrrhenian Sea; Sa, Sardinian Sea; Si, Sicily Channel.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Depth range (m)</th>
<th>Substrate</th>
<th>Colony size (cm)</th>
<th>Density (m$^{-2}$)</th>
<th>Colony form</th>
<th>Branch form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Allassio Bay (Li)</td>
<td>17–22</td>
<td>o</td>
<td>10–20</td>
<td><1</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>2) Carega Shoal (Li)</td>
<td>2–42</td>
<td>h, a</td>
<td>>20</td>
<td>>2</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>3) Tino Island (Li)</td>
<td>11–25</td>
<td>o, a</td>
<td>10–20</td>
<td><1</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td>4) Cape Civitata (Ty)</td>
<td>15–38</td>
<td>h</td>
<td>>20</td>
<td>>2</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>5) Formiche Islands (Ty)</td>
<td>2–60</td>
<td>o, a</td>
<td>10–20</td>
<td><1</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>6) Cape Fenaio (Ty)</td>
<td>20–47</td>
<td>o, a</td>
<td>10–20</td>
<td><1</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>7) Cape Tegge (Ty)</td>
<td>11–40</td>
<td>h</td>
<td>10–20</td>
<td>>2</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>8) Cape Marargiu (Sa)</td>
<td>12–30</td>
<td>o</td>
<td>10–20</td>
<td>1–2</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>9) Osalla Bank (Ty)</td>
<td>15–24</td>
<td>h</td>
<td>10–20</td>
<td>>2</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>10) Cape Aniello (Ty)</td>
<td>15–40</td>
<td>o</td>
<td>10–20</td>
<td>1–2</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>11) Cape Barbì (Ty)</td>
<td>18–60</td>
<td>o</td>
<td>10–20</td>
<td><1</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>12) Cape S. Paolo (Ty)</td>
<td>30–40</td>
<td>o</td>
<td>10–20</td>
<td><1</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>13) Toro Shoal (Ty)</td>
<td>24–39</td>
<td>o</td>
<td>>20</td>
<td>1–2</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>14) Bassana Point (Ty)</td>
<td>20–30</td>
<td>o</td>
<td>10–20</td>
<td><1</td>
<td>s</td>
<td>d</td>
</tr>
<tr>
<td>15) Scoglitti (Si)</td>
<td>20–24</td>
<td>h</td>
<td>>20</td>
<td><1</td>
<td>e</td>
<td>f</td>
</tr>
</tbody>
</table>

The small size-category of *P. fascialis* colonies (<10 cm) with the bryozoan species *P. fascialis* along the western coast of Italy. This study was necessary for the collection of detailed morphological and ecological data which can be used to supplement detailed analysis to study the taxonomic systematics of the *Pentapora* species. The colonies were typically small, less frequently developed, dichotomous branches were less frequently developed in ellipsoidal colonies, being dominant in smaller subspherical colonies.

Colony density and growth form of *P. fascialis*

At Allassio Bay, Tino Island, Cape Tegge, Osalla Bank, Scoglitti, where colony density was high (Table 1), ellipsoidal colonies often had subcircular expansions at the colony edge, formed by the fusion of satellite colonies. The narrow branched, sub-spherical *P. fascialis* colonies growing on other organisms or fishing nets and lines occurred at lower densities of <1 colony/m2, and less frequently, 1–2 colony/m2. These colonies did not appear to have undergone any fusion events.

DISCUSSION

The aim of this study was to investigate the distribution and morphology of the bryozoan species *P. fascialis* along the western coast of Italy. This study was necessary for the collection of detailed morphological and ecological data which can be used to supplement detailed analysis to study the taxonomic systematics of the *Pentapora* species. The colonies were typically small, less frequently developed, dichotomous branches were less frequently developed in ellipsoidal colonies, being dominant in smaller subspherical colonies.

Small colonies of *P. fascialis* (<10 cm) usually occurred as epizoans and were scarce (Figure 2A). These colonies tended to exhibit a subspherical growth form, which was dominant in small colonies of *P. fascialis* (10–20 cm in diameter or less) (Figure 2B).

Colony form of *P. fascialis* in relation to substrate and branching form

The small size-category of *P. fascialis* colonies (<10 cm) with subspherical growth form frequently grew either on other organisms or on artificial substrates such as fishing nets and lines (Figure 2C). Larger ellipsoidal colony forms were dominant on hard substrates (Figure 2C) where they commonly developed folicaceous laminae that were convoluted and fused to varying degrees (Figures 2D & 3B). On the other hand, dichotomous branches were less frequently developed in ellipsoidal colonies, being dominant in smaller subspherical colonies.
70 m depth from the top of a shoal off Mazara del Vallo (TP), southern Sicily (M. Gristina, personal communication).

Colonies of *P. fascialis* were typically an important component of the zoobenthos in the transition zone between the infralittoral and the circalittoral, specifically in the ‘circalittoral sciaphilic algal community’. This type of community, fully developed in most of the locations, occurred either at the foot of cliffs, or on rocky surfaces emerging from the sediment. *Pentapora fascialis* was also a common epizoan in facies that were characterized by gorgonians within the coralligenous biocoenoses on rocky cliffs with high hydrodynamics. This is in accord with previous studies on the French coasts (Augier, 1982; Bellan-Santini et al., 2002) and in the northeastern Adriatic Sea, where the most common distribution patterns observed for the species refer to rocky walls and gorgonian stalks attached to cobbles and boulders on flat soft-sediment (Hayward & McKinney, 2002; McKinney, 2007). Around the British Isles, *P. fascialis* colony morphologies are only of the fused laminar morphology. The species is distributed from as far north as the Shetland Isles, around the west coast of the UK, with occasional records around the west coast of Ireland, through the Irish Sea and Cardigan Bay and up through the English Channel as far east as Beachy Head (NBN gateway). In UK coastal waters, *P. fascialis* colonies are found attached to bedrock, large boulders, cobbles and pebbles, they have not been recorded living on seafans.

Substrate is one of the main environmental parameters that controls bryozoan colonization, settlement and growth (Hageman et al., 1997; Taylor & Wilson, 2003; Amini et al., 2004). Natural marine hard substrates both biogenic (live and partially dead gorgonians, sponges) and abiotic materials (rocks, cobbles and boulder) represent the preferred substrate for *P. fascialis* colonization compared to unconsolidated sediments, on which the taxon has never been found. Large, long-lived gorgonians, such as *Paramuricea clavata*, *Eunicella singularis* and *Leptogorgia sarmentosa*, and large sponges offer, analogously to rocky substrata and boulders, relatively stable habitats, even in moderately exposed sites, for the rigidly erect species that rises from sediment avoiding being covered with mud. According to previous observations

Fig. 2. Frequency distribution of *Pentapora fascialis* colonies in the 15 localities: (A) size-classes type of substrate; (B) size-class colony form; (C) type of substrate colony form; (D) branch colony form.

Fig. 3. *Pentapora fascialis* growth forms: (A) depressed globular colony with an elliptic perimeter and expanded, foliaceous laminae; (B) detail of slender, dichotomous branches of a subspherical colony growing on the gorgonian *Paramuricea clavata*.
(Cocito & Ferdeghini, 2000), the species only developed dichotomous branches when living on an organic substrate, which could represent a limiting factor for the development of large colonies and for high colony densities to occur. In contrast, on hard substrates ellipsoidal colonies were found bearing both foliaceous laminae and dichotomous branches. Foliaceous laminae were associated with the highest density of colonies in contrast to the Atlantic environment where colonies, typically displaying foliaceous morphology, are usually smaller in size and characterized by low densities (Lombardi personal observation; MarLIN website).

At the 15 localities studied, most of the bryozoan colonies were found in current swept areas, particularly at capes, shoals and banks where food availability to benthic suspension feeders is guaranteed by the hydrodynamic regime (Gili & Ros, 1985). Many bryozoans display a diversity of colony morphologies that interact with water flow affecting resistance to current action and food capture (McKinney & Jackson, 1989). A relationship between morphology of *P. fascialis* colonies and the local environment was proposed by Cocito & Ferdeghini (2000), who considered variations in colony morphology to be an important adaptive mechanism of suspension feeders to their local environment. Small colonies of *P. fascialis* with slender, dichotomous branches may represent an adaptive response to conditions where colonies grow in a multidirectional flow. In contrast, large colonies with expanded thick laminae, may be a response to the increased capacity of colonies to withstand flow stress, allowing colonies

![Fig. 4](image-url)

Fig. 4. (A) Relationships among colony size, colony density and colony form for *Pentapora fascialis* growing on organic substrate according to the multiple correspondence analysis (MCA); (B) Relationships among colony size, colony density and branch form for *P. fascialis* growing on hard substrata. Variable categories are given in Table 1. Both graphs show the first and second factorial planes.
to take advantage of strong laminar currents. In our study, for
colonies growing on an organic substrate, the MCA analysis
divided ellipsoidal forms from large, high-density colonies
(Figure 4A). For colonies growing on hard substrata, colonies
with dichotomous branches were separated from those occurring
at highest density (>2 colony/m²), and medium size
colonies weakly clustered together with low density distribu-
tion away from large colonies at intermediate
density (1–2 colony/m²) (Figure 4B). These results therefore
provide further support for the hypothesis of Cocito &
Fredeghini (2000).

Further functional analyses of different morphotypes
across a wider range of environments are required to charac-
terize more accurately the relationship between colony mor-
phology and ecology, particularly with respect to
hydrodynamic regime. One possibility would be to grow colo-
nies of Pentapora in flow tanks of different regimes, or to
transplant young colonies into different regimes in the
natural environment.

Considerable phenotypic plasticity is exhibited by P. fascia-
lis in terms of variation in the size and morphology of the
colony, and branching pattern. Genetic studies and detailed
morphometrics at the zooid level are currently underway.
This approach will further clarify the taxonomic relationships
between different colony morphologies and the level of genetic
differentiation between branching and foliaceous colonies.

In accordance with previous reports (Gautier, 1962;
Hayward & Ryland, 1999), we found the most frequent size-
class to be 10 to 20 cm in colony diameter. However, colonies
growing on hard bedrocks and rocky bottoms frequently
reached some 50 cm across. Apart from one record of a
colony of 1 m in diameter in the Adriatic Sea (Cocito et al.,
2004), larger sized colonies (80 cm in diameter, 50 cm in
height) were previously described only from the Ligurian
Sea (Cocito et al., 1998). The fragility of the carbonate skeleton
of the colony makes the species very sensitive to damage by
human activities, in particular dredging and diving activities.
In one study, a reduction in the average size of P. fascialis col-
onies was reported in areas where frequent diving and dredging
activities were taking place (Sala et al., 1996). Other threats
such as water pollution, changes in sedimentation rate, fine
sediment input and trawl fishing have been reported for
large, erect bryozoans (Harmelin & Capo, 2002). Due to
recent increases of water turbidity and sewage, large, erect
ramose bryozoan colonies have been reduced in number or
have even disappeared in several urban coastal areas of the
Mediterranean Sea. Losses of colonies due to anthropogenic
activities, clearly has repercussions for the overall levels of
biodiversity of these coralligenous bicoenosens.

In summary our study brings useful new information
regarding the large-scale distribution and growth habits of
the conspicuous reef constructing bryozoan species, P. fascia-
lis. We advocate further studies of this type, particularly in
other areas of the Mediterranean and also into the Atlantic
to establish the distribution of colony morphologies and
growth types throughout the range of the species. Such data
will be of considerable importance in calculating the com-
ponent that these organisms contribute to regional carbon
sinks. These regional sinks are a highly significant component
of the global carbon cycle. A basic knowledge of the biogeo-
graphical distribution of major current carbon producing
organisms is essential to further our understanding of the
impacts (e.g. ocean acidification) of climate change in relation
to carbon cycling. This is necessary both to clarify events from
the past (through the fossil record) and also to inform for the
future (for modelling the effects of climate change).

ACKNOWLEDGEMENTS

Thanks to R. Sandulli, A. Peirano and S. Sgorbini for assistance with fieldwork and to ten diving centres for logistical support with SCUBA.

REFERENCES

distribution and growth form associations as a tool in environmental

benthiques de la Mediterranee. Conseil de l’Europe Strasbourg,

Bardat J., Benessititi F. and Hindermeyer X. (1997) Approche methodo-
logique de l’evaluation d’espaces naturels—exemple de l’application de

Bellan-Santini D., Bellan G., Bitar G., Harmelin J.G. and Pergent G.
(2002) Manuel d’interpretation des types d’habitats marins pour la
selección des sites à inclure dans les inventaires nationaux de sites nat-
urels d’intérêt pour la conservation. Programme des Nations Unies
pour l’Environnement : Plan d’Action du Mediterranée, Occasional
Publications 225 pp.

the bryozoan Pentapora fascialis in the northwestern Mediterranean.
Marine Biology 131, 73–82.

fascialis (Cheilostomata, Ascophorina). In Herrera Cubilla A. and
Jackson J.B.C. (eds) Proceedings of the 11th International
Bryozoology Association Conference, Panama, Smithsonian Tropical
Research Institute, pp. 176–181.

Cocito S. and Ferdeghini F. (2001) Carbonate standing stock and carbon-
ate production of the bryozoan Pentapora fascialis in the north-

Scientia Marina 68, 137–144.

around underwater springs in the north-eastern Adriatic Sea. Facies
60, 13–17.

Gautier Y.V. (1962) Recherches ecologiques sur les bryozoaires chlos-
tomes en Mediterranee occidentale. Recueil des Travaux de la
Station Marine d’Endoume No. 38, 434 pp.

Gili J.M. and Ros J.D. (1985) Study and cartography of the benthic
communities of Medes Islands (NE Spain). PSZN. Marine Ecology 6,
219–234.

in Mediterranean rocky bottoms. In Jackson P.W. et al. (eds) Bryozoan

Hageman S., James N.P. and Bone Y. (1997) Cool water carbonate pro-
duction from epizoic bryozoans on ephemeral substrates. Palaeo 15,
33–48.

from the vicinity of Rovinj, Croatia. Bulletin of the American

and

Correspondence should be addressed to:

J.S. Porter
Institute of Biological Sciences, Edward Llwyd Building
Penglais Campus, University of Wales Aberystwyth
Aberystwyth, SY23 3DA, Wales, UK
email: jop@aber.ac.uk