Understanding and improving household energy consumption and carbon emissions policies – a system dynamics approach
Oladokun, Michael Gbolagade; Motawa, Ibrahim; Banfill, Phillip Frank Gower

Published in: Proceedings of 12th International Conference for Enhanced Building Operations (ICEBO), 23-26 October, University of Salford, Manchester, United Kingdom

Publication date: 2012

Document Version Peer reviewed version

Link to publication in Heriot-Watt University Research Portal

Understanding and Improving Household Energy Consumption and Carbon Emissions Policies – A System Dynamics Approach

M.G. Oladokun, I.A. Motawa, P.F.G. Banfill

School of the Built Environment, Heriot-Watt University, Edinburgh, EH14 4AS, UK

Email: mgo5@hw.ac.uk, I.A.Motawa@hw.ac.uk, P.F.G.Banfill@hw.ac.uk

Abstract:
The purpose of this paper is to propose and demonstrate the application of system dynamics modeling approach to analyze and study the behavior the complex interrelationships among the different policies/interventions aimed at reducing household energy consumption and CO₂ emissions (HECCE) based on the Climate Change Act of 2008 of the UK government. The paper uses the system dynamics as both the methodology and tool to model the policies/interventions regarding HECCE. The model so developed shows the complex interrelationships among the different policies/interventions variables and presents the basis for simulating the different scenarios of household energy consumption reduction strategies. The paper concludes that the model is capable of adding to the understanding of the complex system under which HECCE operate and improve it accordingly by studying the behavior of each policy/intervention over time. The outcomes of the research will help decision makers draw more realistic policies/interventions for household energy consumption which is critical to the CO₂ emissions reductions agenda of the government.

Keywords:
CO₂ emissions, domestic buildings, household energy consumption, government policies, system dynamics.

1. Introduction

There have been concerns over sustainability issues around the world, especially when it comes to the way energy is used and the corresponding environmental impacts in the form of climate change, global warming, etc. The effects of climate change, due to carbon dioxide and other greenhouse gas emissions for example, could see the global temperatures rise by up to 6°C (UNDESA, 2010) thereby causing extremes in weather systems. Reduction in energy consumption patterns in dwellings is, therefore, seen as one of the breakthroughs to curtail this threat. According to the Office of National Statistics (2009), total energy consumption in buildings in the UK accounts for 42.3% in relation to the UK total energy consumption. 27.5% of this amount was consumed in domestic buildings in the year 2008. Presently, CO₂ emissions attributed to domestic buildings alone is around 26% of the total UK’s carbon emissions (Natarajan et al., 2011). For this reason, the domestic sector of the UK’s economy is then chosen as the centre of focus for both mitigation and adaptation agendas (Natarajan et al., 2011) with a view to meeting the CO₂ emissions reductions target of 80% by 2050 based on 1990 levels as laid down by the Climate Change Act of 2008.

To have this target met, the UK’s government has initiated a number of policies/strategies like fabric insulation improvement, energy tariffs, alternative energy sources e.g. micro-generation, energy subsidy for uptake of technology like micro-generation, behavioral
change, initiatives on fuel poverty, *e.t.c.* to serve as measures against this menace. Oladokun *et al.* (2012) argues that the issue of sustainability in terms of HECCE is a complex socio-technical system that must be acknowledged as such and appropriately understood as a system because the characteristics of the parts making up this system cannot be viewed individually. Prior now, there have been a plethora of approaches used in analyzing the HECCE. The reality on ground suggests that there still remains debate on how best energy consumption and carbon emissions reductions in dwellings can be achieved when there are different policies evolving on a daily basis! It is against this backdrop that this paper intends to propose and demonstrate a methodology that is capable of modeling the complex system of different policies regarding HECCE. This study will contribute to the body of knowledge by adding to the understanding of the complex nature of HECCE and providing a model of interrelationships/dependencies among different variables that need consideration when analyzing and formulating policies regarding HECCE. Further, the study would contribute to the body of knowledge by providing a reliable tool that may even serve as learning laboratory for policy/decision makers to test different policies and answer the question of “what if” of carbon reductions strategies.

2. The Epistemology of Household Energy Consumption and CO₂ Emissions Models

In energy studies literature, there has been a superfluity of frameworks serving as theoretical knowledge-base to conceptualize HECCE and these have contributed in no small measure to the tools for the analysis and policy formulation regarding HECCE. Keirstead (2006) argues that these frameworks fall within two domains – disciplinary and integrated domains.

2.1. Disciplinary Frameworks

For years, “disciplinary” frameworks have been the dominant guiding approach for explanation and policy making regarding HECCE. For example, these frameworks are developed from four major disciplines with each discipline illustrating its own approach/framework for solving HECCE problems. These disciplines are engineering, economics, psychology, and sociology and anthropology. Engineering frameworks, for example, illustrates mainly the technology of HECCE by estimating HECCE based on the physical laws with little or no attention to economic, sociology, or even behavioral aspects of HECCE (*i.e.* the studies of Anderson, 1985; Stokes *et al.*, 2004; Hart and Dear, 2004). The economic framework as one of the disciplinary frameworks conceptualizes HECCE when it comes to understanding HECCE due to the effects of income levels, energy prices and taxes, *etc.* (Ruffell, 1977; Baker, 1991; Greening *et al.*, 1995; Ironmonger *et al.*, 1995). As a social science based framework, however, it introduces some behavioral aspects.

Interestingly, Wheelock and Oughton (1994) argue based on the available evidence that the concept depicts by economic approach is not complete in aiding the understanding of HECCE. It is against this background that the studies in the area of psychology took up this challenge and contribute to the understanding of household energy consumption behavior. Notably in this circle is the Theory of Planned Behavior (TPB) of Ajzen (1991), which immensely contributed to the behavioral aspect of HECCE by serving as theoretical knowledge-base to many studies. However, the TPB framework cannot be used as a standalone framework for explaining HECCE because the theory only used personal constructs like attitudes and beliefs without any recourse to other aspects like social and
cultural contexts. This then led to studies in the field of sociology and anthropology in a bid to conceptualize energy and society.

Reflecting on all these approaches, it is evident that they are unlikely to capture the kind of complex problems plaguing energy sector now and hence the need for a more robust approach capable of integrating a number of disciplinary approaches together. It is on the basis of this that a small number of literatures suggest “integrated” frameworks that cut across many disciplines.

2.2. Integrated Frameworks

A number of “integrated” frameworks have been used to conceptualize HECCE in order to aid a better understanding of energy issue and proffer adequate solutions. The study of van Raaij and Verhallan (1983) provided a novel approach to conceptualizing energy behavior. His framework made use of both physical parameters of the dwellings and behavioral characteristics of the households. The research of Lutzenhiser (1992) proposes a cultural framework of HECCE and the work of Wilk (2002) gives the global consumption framework of household energy consumption. The study of Hitchcock (1993) uses the systems theory to provide an integrated framework of energy use and behavior in domestic buildings and argues that energy consumption patterns in domestic buildings needs to be fully understood from systems perspective. The study used the concept of socio-technical systems to conceptualize HECCE and came up with a framework. However, no modeling technique was proposed to capture these socio-technical systems. It is then pertinent to look at the modeling approaches of these “integrated” frameworks.

2.3. Bottom-Up and Top-Down Modeling Approaches

Over the years, there have been a number of studies on modeling approaches to capture domestic energy consumption (Strachan and Kannan, 2008; Bohringer and Rutherford, 2009; Tuladhar et al., 2009; Swan and Ugursal, 2009); Kavtic et al., 2010). Based on Kavtic (2010), these approaches vary tremendously in terms of requirements, assumptions made, and the predictive abilities of the models. Majority of the studies (Kavtic et al., 2010; Kelly, 2011) argue that there are basically two epistemic approaches to modeling HECCE. According to Kavtic et al. (2010) and Kelly (2011), these approaches are either top-down approach or bottom-up approach. They acknowledged that there have been some cases where a hybrid of the two approaches have been made which combined them together to form more robust models.

These approaches have received one form of criticism or the other when it comes to modeling HECCE. Among those that have offered criticism is Natarajan et al. (2011). This came from the point of view that the issue of energy consumption is a complex one which needs to be acknowledged as such by looking at it from the non-deterministic perspective rather than the deterministic approach being currently in use. Also, majority of these modeling approaches find it difficult to model a combination of quantitative and qualitative variables together. This difficulty stems from the fact that the issue of energy consumption and carbon emissions in general involves a web of interaction between householders and the technology put in place in the dwellings and the wider socio-economic environment. This then calls for an approach that is able to cope with this kind of difficulty. The next section then discusses system dynamics as an alternative approach to model complex systems.
3. System Dynamics – An Approach to Model Complex Systems

System dynamics (SD) has been depicted as an emerging field in the study and analysis of complex systems. It is, indeed, a multi-disciplinary subject that deals with the study of any dynamic system. Motawa and Banfill (2010) argue that SD is both a methodological approach and set of analytical tool capable of palliating the deficiencies of traditional analytical approach and the justification for this modeling paradigm has been covered elsewhere by the authors (Oladokun et al., 2012). There are quite a number of definitions of SD, but the one given by Coyle (1997) offers a more robust definition as an approach that “deals with the time-dependent behavior of managed systems with the aim of describing the system and understanding, through qualitative and quantitative models, how information feedback governs its behavior, and designing robust information feedback structures and control policies through simulation and optimization”. Fundamentally, SD deals with ‘feedback’ processes (as given in the definition) and built on ‘cause and effect’ relations among different variables influencing the system under investigation (Ranganath and Rodrigues, 2008). According to Sterman (2000), SD is a “method to enhance learning in complex systems” as it is grounded in the theory of modern feedback control and nonlinear dynamics. This has now been applied to numerous fields of study. Sterman (2000) argues that SD has found application in modeling human behavior as well as physical and technical systems, which is capable of solving important real life problems mainly because it draws on cognitive and social psychology, economics, and other social sciences.

![Diagram of System Dynamics Methodology](image)

Fig. 1. System Dynamics Methodology (Adapted from Ranganath and Rodrigues, 2008)

The diagram shown in Figure 1 depicts the system dynamics methodology in a general sense as adapted from the work of Ranganath and Rodrigues (2008). This shows the method used in solving any system dynamics problem. The stages involved are interrelated and linked together as all the steps are directed towards the ‘understanding of the system’. This reveals that at any point in time in each stage of system dynamics, a better insight into the problem is gotten, which eventually leads into the better understanding of the system under study. The methodology indicates that the first stage it to identify the problem in question and properly define it through the situation analysis. This involves identifying the variables in the problem and relates them to one another in order to find out the causal relationships and feedbacks in the system. Based on Ranganath and Rodrigues (2008), the most important aspect of problem
identification is to identify the time-based policy parameters, which influence the dynamics of the system under study.

The second stage as shown in Figure 1 is the system conceptualization. This involves representing the ‘cause and effect’ relationship between the variables in the system pictorially and this is called causal loop diagram (CLD). It is worth mentioning that at this stage the diagram does not indicate the stock or the flow but merely indicates the influence of one variable on the other. Stage three involves formulating the model by representing the model using the stock and flow diagram (SFD). This diagram is a pictorial representation of the behavior of the system in the form of accumulation (stock) and flow (rate). This automatically leads to stage four where the SFD is turned into a simulation model. It must be emphasized that mere CLD or SFD do not constitute the system dynamics. It is when the variables in the model are related together in terms of equations before it can be said that it forms the simulation model. Once the model is validated accordingly, the simulation is then run and the output of the simulation is presented in the form of graphs. These graphs reveal the pattern exhibited by the variables under study over a period of time. Based on these outputs, policy analysis and improvement is carried out by the decision makers and this is stage five of the methodology. Implementation of the policy improvement (stage six) then concludes the system dynamics methodology.

This method demonstrates system dynamics as a powerful analysis tool for use by decision makers. It is worth mentioning that system dynamics has the ability to be used as a learning laboratory tool (Rodrigues and Bowers, 1996) and in conjunction with other traditional decision making techniques. The following section presents the application of system dynamics methodology to model the impact of different UK government policies on HECCE.

4. Application of System Dynamics Methodology to the Impact of Different Policies on Household Energy Consumption and CO₂ Emissions

Based on the system dynamics methodology discussed above, the following sub-sections then discuss the system dynamics steps that are covered so far in this paper.

4.1.1. Problem Identification

In system dynamics modeling process, the first step, as advocated in Section 3 above is to identify the problem that necessitates the model. The problem under study has, therefore, been explicitly discussed in Section 1 of this paper.

4.1.2. System Conceptualization

As previously highlighted, the government of the UK is taking a number of pragmatic steps in order to meet the energy consumption and carbon emission reductions targets. Among the measures on ground are: improving household fabric energy efficiency, encouragement of micro-generation of energy at household level, provision of subsidy/financial incentives for uptake of this micro-generation technology by householders, householders behavioral change, and the likes. After the review of relevant literature including government documentations was carried out in order to identify the variables to be included in the model, the system conceptualization was conducted that involves identifying the sub-systems, the
model boundary, the reference modes, and the main CLD for the model. The following sub-
sections then discuss these steps.

4.1.2.1. Model Sub-systems

The system under study has a number of sub-systems and each of them is controlled by a
number of variables as identified from the literature. The sub-systems in this model are
discussed as follows.

1. Energy efficiency of dwellings is one of the sub-systems under consideration by this
model. It needs to state that the government policy on dwellings’ energy efficiency
aims at providing zero carbon homes which is a step towards the carbon reductions
targets. This policy targets dwellings in general. Householders are required to increase
the energy efficiency of their homes by improving on fabrics insulation. This may
mean taking the step of cavity wall, loft, and floor insulation, drought proofing and an
uptake of double glazing. This will allow the householder to spend little in heating
up their homes without being in fuel poverty. Fuel poverty means “being unable to
afford to keep warm”. According to Department of Energy and Climate Change
(DECC) (2012a), a household is considered to be in fuel poverty if it spends more
than 10% of its income on fuel in order to adequately heat its home. Fuel poverty
negatively affects people’s health especially the elderly, children and those with a
prolonged illness or disability. Poor home energy efficiency, high energy tariff and
low household income have been attributed to the cause of fuel poverty.

2. Uptake of alternative energy source, in the form of micro-generation, is another sub-
system that is worth discussing. Micro-generation is defined under the Energy Act
2004 and according to DECC (2012b) to be “a term used for the generation of low,
zero carbon or renewable energy at a ‘micro’ scale”. This covers any energy
generation that is decentralized. Micro-generation technologies may take the form of
solar photovoltaic (PV), micro-wind turbines, micro-hydro or even micro-combined
heat and power (CHP). Micro-generation provides energy security by increasing
household energy flow and by tackling the issue of increase in energy tariff and
attracts subsidy/financial incentives to the consumers with further reduction in tax for
uptake of this technology.

3. Another sub-system in the model is subsidy/financial incentives to consumers for
uptake of technology like micro-generation. This sub-system is another important
policy of the government in making sure that energy security is guaranteed at all times
by increasing the uptake of alternative energy source i.e. micro-generation and helps
in reducing energy tariff. However, availability of energy subsidy may have rebound
effects on energy consumption by spending the savings accrued on increased energy
consumption. The energy subsidy sub-system has a number of variables and feedback
loops that control the behavior of the system under study.

4. Household energy consumption behavior is another sub-system that worth discussing.
Dietz et al. (2009) argue that behavior is influenced by a complex blend of
demographics, values, intentions, situational characteristics and psychological factors.
In this sub-system, behavioral intention to consume energy reinforces household
energy consumption and invariably leads to increment in CO₂ emissions. While
energy tariff as one of government policies and the cost expended on energy try to
stabilize the household behavioral intention to consume energy, increase in household income reinforces their consumption pattern.

4.1.2.2. Model Boundary

This section discusses the boundary for the model. As highlighted in section 3 previously, one of the strengths of SD is in its ability to deal with feedback structure. It is well known that every feedback structure has a closed boundary. As one of the modeling process in SD, it needs to clearly define the model boundary since it is practically impossible to include all the variables in the model. In this research, the variables to be used for the model are extracted from the relevant literature including government documents. Table 1 then shows the variables included in the model and the ones that are not considered in the present version of the model. The variables included in the model are divided into two namely: (1) endogenous – dynamics variables involved in the feedback loops of the system; and (2) exogenous – variables whose values are not directly affected by the system.

<table>
<thead>
<tr>
<th>Endogenous variables</th>
<th>Exogenous variables</th>
<th>Excluded variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climatic effects</td>
<td>Surface temperature</td>
<td>Factors influencing international fuel price like war, etc</td>
</tr>
<tr>
<td>International fuel price</td>
<td>Rainfall</td>
<td>Other factors that can cause catastrophic climatic effects</td>
</tr>
<tr>
<td>Government policy change</td>
<td>Snowfall</td>
<td></td>
</tr>
<tr>
<td>Alternative energy sources i.e. micro-generation</td>
<td>Sea level</td>
<td></td>
</tr>
<tr>
<td>Energy subsidy on alternative energy sources</td>
<td>Householders health</td>
<td></td>
</tr>
<tr>
<td>Energy tax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy tariff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy expenses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel poverty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabric insulation improvement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy efficiency in dwellings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household behavioral intention to consume energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household energy flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household energy consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2 emissions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1.2.3. **Reference Modes for the Model**

The next step under the system conceptualization in SD is to give a plot of the behavior of key variables in the model over time. This is referred to as reference mode or behavior chart. The reference mode depicts historical data and/or mental models in graphical form and forms the basis for comparison once the model is built. Figures 2 and 3 illustrate examples of some of the main reference modes for the model.

![Graph showing uptake of micro-generation](image)

Fig. 2. Uptake of micro-generation (The Scottish Government, 2012)

![Graph showing carbon emissions projections](image)

Fig. 3. Carbon emissions projections (DECC, 2012c)

4.1.2.4. **The Main Causal Loop Diagram**

Achieving CO₂ emissions reductions target is critical to the UK government based on the Climate Change Act of 2008. Fig. 4 illustrates the main CLD developed for the problem under investigation. The key variables and their relationships are shown in the diagram which demonstrates the use of SD in adding to the understanding of this complex system. The CLD
so developed indicates that there are many feedback loops. The polarity attached to a given feedback loop is achieved by summing up the negative polarity of each of the variables within such a loop. Loops with an even number of negative relationships among the variables are regarded as positive (self-reinforcing loops), whereas, the ones with an odd number are negative (self-balancing loops). It is necessary to mention that loops with zero negative relationship are taken as being even. Also, it is worth mentioning that variables within the self-balancing loops will stabilize over time, whereas variables within self-reinforcing loops will continue to increase indefinitely.

As earlier noted that the CLD presented in Fig. 4 shows many self-reinforcing feedback loops causing instability in the system, only some of these loops will be taken for demonstration purpose only. Indicated in Fig. 4 are three self-reinforcing loops (R1 – R3). R1 is consumption loop and contains variables like [Household energy consumption – CO₂ emissions – Climatic effects – International fuel price – Household energy flow]. R2 is subsidy loop, which is provision of subsidy for uptake of alternative energy like micro-generation which increases household energy flow and therefore encourages more energy consumption by householders. This loop contains the following variables: [Energy subsidy on alternative energy sources – Household energy consumption – CO₂ emissions – Climatic effects – Government policy change]. Further, energy tariff loop (R3) is causing instability in the system and contains the following variables [Energy tariff – Energy expenses – Energy tax].

Fig. 4. Main Causal Loop Diagram
In order to counter the instability caused in the system as a result of the self-reinforcing loops, the self-balancing loops are created. Five of the self-balancing loops (B1 – B5) in the model are as indicated in Fig. 4. B1 is termed the emission loop. CO₂ emissions is been reduced based on the policy of government on provision of alternative energy that is cleaner and renewable. This loop contains [CO₂ emissions – Climatic effects – Government policy change – Alternative energy source i.e. micro-generation]. Also, the instability in the system is calmed down by different policies of the government (B2 - government policy loop) which contains variables like [Government policy change – Alternative energy source i.e. micro-generation – International fuel price]. B3 is alternative energy source loop [Alternative energy source i.e. micro-generation – Energy tax – Energy tariff]. Loop B4 is consumption behavior loop [Household behavioral intention to consume energy – Household energy consumption – CO₂ emissions – Climatic effects – Government policy change – Energy tax – Energy tariff]. An attempt to carry out fabric insulation improvement, which undoubtedly improves the energy efficiency of dwellings, is reflected in loop B5 (energy efficiency loop) [Energy efficiency of dwellings – Energy expenses – Energy tax – Energy tariff – Household income – Fabric insulation improvement].

Once the model is set-up, it will mean that there will be needs to pay special attention to some of the variables in the loops causing instability in the system (especially the time – dependent ones).

5. Conclusion and Further Work

This paper has demonstrated the efficacy of system dynamics tool in adding to the understanding of policies regarding household energy consumption and CO₂ emissions. Authors advocate that there are many interrelated variables in play, the analysis of which will further help in relieving the pressure being mounted by the need to significantly reduce household energy consumption and meet up with the CO₂ emissions reductions targets. The CLD developed illustrates the importance of SD as a methodology to simulate various policies regarding CO₂ emissions reductions target. Feedback loops are shown that need close monitoring in order to stabilize the system performance under consideration. The next stage of the research is to translate the CLD to SFD and relate all the variables in the model together with algebraic equations. The simulation will be run and the output of the simulation is presented in the form of graphs. Validation of the model will then be carried out accordingly. Based on these outputs, policy analysis and improvement can then be conducted and correct policy improvement is implemented.

6. Acknowledgement

The authors are most grateful to Heriot-Watt University for provision of funds for this research.

References:

Ruffell, (1977), *An econometric analysis of the household demand for electricity in Great Britain*, Scottish Academic P.

Wheelock, J. and Oughton, E. (1994), *The household as a focus for comparative research*, Newcastle: Centre for Rural Economy, Department of Agricultural Economics and Food Marketing, University of Newcastle upon Tyne.