Integration of Microfluidic Channels with Frequency Selective Surfaces for Sensing and Tuning
Desmulliez, Marc Phillipe Yves; Pavuluri, Sumanth Kumar; Flynn, David; Mateo-Segura, Carolina; McKeever, Elizabeth

Published in:
The 8th European Conference on Antennas and Propagation (EuCAP 2014)

DOI:
10.1109/EuCAP.2014.6901710

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Heriot-Watt University Research Portal

Citation for published version (APA):
Integration of Microfluidic Channels with Frequency Selective Surfaces for Sensing and Tuning

Sumanth K. Pavuluri1, Carolina Mateo-Segura1, Elizabeth McKeever1, George Goussetis1, David Flynn1, Marc P.Y. Desmulliez1

1Microsystem Engineering Centre (MISEC), Institute of Sensors Signals and Systems, Earl Mountbatten Building School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK

Abstract— A two dimensional perturbed Frequency Selective Surface (FSS) with enhanced near-fields has been used for microwave sensing applications. The perturbation causes the scattering by the perturbed array, within a frequency range to be dominated by an odd mode which gives rise to a sharp resonance with a seven-fold near field enhancement compared to the unperturbed array. The spectral shift of the odd resonance is studied for small variations of the electric permittivity of the supporting substrates. The aperture FSS is shown theoretically to increase the sensor sensitivity. The FSS is integrated with a microfluidic channel inside a waveguide simulator to ease the fabrication process and the performance of the ensemble is investigated for different samples inside the channel.

Index Terms—Frequency Selective Surfaces, microfluidics, microwave sensing, reconfigurable components.

I. INTRODUCTION

Frequency Selective Surfaces (FSS) have been extensively studied over the past decades for their use in antenna radomes [1]. Recently, the development of tunable FSS functionality by integrating microfluidic technology [2] has become increasingly attractive for a range of applications including quasi-optical microwave components for antennas [3]. Parallel to these developments, FSSs also provide a suitable platform for microwave and THz sensing [4-5]. The underlying operating principle in both these applications is based on a spectral shift of the FSS reflection and transmission responses in the presence of a liquid dielectric in the vicinity of the array. In recent work, a technique has been proposed that produced a strong enhancement of the near field in the vicinity of the array and frequency 10.25GHz (resonance of the array) and gating lobes appear at around 17.65GHz, black line in Fig. 1(a). A perturbation is introduced by altering the length of every second dipole (i.e. capacitively loading the array). For L2=12.25mm, the reflection response, grey line in Fig. 1(a), matches the unperturbed array in the vicinity of 15.6GHz (even mode excitation). In the lower frequency band, an odd resonant mode is excited within a narrowband, manifested as another full reflection point at 9.85 GHz followed by a reflection null at 10.25GHz (a.k.a. modal interaction null). As proved in [6], within this frequency range strong and anti-parallel currents flow in the two dipoles and as a consequence strong magnetic fields are manifested in the direction normal to the surface. Fig. 1(b) shows the longitudinal component of the magnetic field, Hz, at the plane of the array and frequency 10.25GHz. The magnitude of Hz at the centre of the unit cell is 18.7 mA/m, showing a seven-fold near-field enhancement, of the incident magnetic field (H0=2.65mA/m). The odd-mode resonance and strong magnetic fields can be exploited for microwave sensing application. Next, the perturbed FSS is printed on a 0.2mm thick dielectric substrate. The reflection response is studied for small variations of the relative permittivity of the substrate (ɛr=2, ɛr=2.4 and ɛr=2.7). In Fig. 2 the perturbed resonance (10.25GHz) for aperture FSS is greatly affected by these changes when compared to the unperturbed resonance (15.6GHz), as consequence of the strong electric fields. It is envisioned that the perturbed dipole FSS will be useful for the detection of/tuning with electrically conductive fluids due to enhancement of magnetic near fields while the perturbed aperture FSS will be useful for the detection of/tuning with...
dielectric based fluids due to enhancement of electric near fields.

III. INTEGRATION WITH MICROFLUIDICS

A. Design of the FSS array with integrated microfluidics

The perturbed dipole FSS designed in the previous section is to be integrated with a micro-fluidic channel to characterize the dielectric properties of biological substances. The working principle is based on the shift of the odd mode resonance for very small changes in the dielectric constant and for micro-litre volume of substances. Due to the significant effect of the dielectric support on the perturbed FSS response, and to maximize the perturbation caused by the sample in the micro-fluidic capillary, dielectric substrates should be avoided. According to the Babinet’s principle, in this section a perturbed aperture FSS with the same dimensions as its complementary one is employed. The transmission response sof the unperturbed and perturbed aperture screens calculated using CST Microwave Studio are shown in Fig.2. As expected, the modal interaction null emerges at 10.25GHz. The longitudinal component of the electric near field, E_z, at 1mm from the plane of the array and at the frequency of the modal interaction null shows a maximum at the centre of the unit cell. The micro-fluidic capillary shall be located at the location of maximum field in order to increase the spectral shift of the transmission response. Fig. 3 shows the fabricated perturbed aperture FSS.

B. Design of prototype

The infinite aperture array concept has been simplified in order to validate the design and ease the manufacturing process. Aperture FSS’s are generally characterized by their equivalent admittance [1]. Following the concept described in [7], an equivalent scenario of the 2-D perturbed arrays presented in the previous section consists on a common X-band rectangular waveguide ($a=22.86\text{mm}$, $b=10.16\text{mm}$) loaded with the aperture FSS along the symmetry plane of the waveguide cross-section, as shown in [7, Fig.2]. On this basis a single unit cell of the perturbed array is located inside a waveguide as in the inset of Fig. 3. The geometrical symmetry of the structure and image theory indicates that the structure in Fig.3 and the infinite 2-D periodic aperture array are electrically equivalent. Simulations of a rectangular wave guide loaded with a perturbed aperture unit cell is depicted in Fig.3 where the odd-mode resonance is manifested in the spectral response at 9GHz.
The micro-fluidic channel is modelled as a dielectric tube with inner diameter of 300 \(\mu \text{m} \). The dielectric tube is considered to have a relative permittivity of 2 and subsequently 2.4. The spectral shift for the two samples is about 30MHz of the odd mode resonance, (9.64GHz to 9.61GHz). Fig. 4 shows the transmission coefficient from the perturbed aperture unit cell inside a waveguide.

The microfluidic channels were fabricated from Polymethylmethacrylate (PMMA), which is sold under various trade names such as Plexiglas®. Using an Epilog Legend Elite Series CO2 laser system \[8\] we engraved 350 \(\mu \text{m} \) deep channels. The channel structure is shown in Fig. 5 and consists of an inlet port, two parallel channels which align with the two FSS apertures and an autonomous micro capillary-based microfluidic pump at the outlet. This microfluidic pump was designed on the principles of natural capillary forces that draw the fluid from the inlet to the vent (outlet) as shown in [9-10]. The microfluidic chip was then bonded utilizing an in house built thermo compression jig to another sheet of PMMA with access holes for the inlet and outlet. The microfluidic chip is shown in Fig. 5 and the measurement configuration is shown in Fig. 6.

IV. CONCLUSION

The integration of microfluidic channels in a Frequency Selective Surface has been studied with the view of increasing the spectral shift in the observed response. The theoretical concepts underlying this integration have been discussed and the details of its implementation in a waveguide simulator have been elaborated in terms of the RF design as well as the fabrication. Numerical results have been presented that validate the improved spectral shift provided by the proposed approach. A prototype has been fabricated and experimental results will be presented at the conference.

ACKNOWLEDGMENT

Authors would like to acknowledge the financial support of the Innovative electronic Manufacturing Research Centre (IeMRC) through the funding of the Flagship Project Smart Microsystems referenced FS/01/02/10.

REFERENCES

