Profile driven dataflow optimisation of mean shift visual tracking

Bhowmik, Deepayan; Stewart, Robert James; Wallace, Andrew Michael; Michaelson, Gregory John; Qian, Xinyuan

Published in:
2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)

DOI:
10.1109/GlobalSIP.2014.7032066

Publication date:
2014

Document Version
Peer reviewed version

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Abstract—Profile guided optimisation is a common technique used by compilers and runtime systems to shorten execution runtimes and to optimise locality aware scheduling and memory access on heterogeneous hardware platforms. Some profiling tools trace the execution of lower level code, whilst others are designed for abstract models of computation to provide rich domain-specific context in profiling reports. We have implemented mean shift, a computer vision tracking algorithm, in the RVC-CAL dataflow language and use both dynamic runtime and static dataflow profiling mechanisms to identify and eliminate bottlenecks in our naive initial version. We use these profiling reports to tune the CPU scheduler reducing runtime by 88%, and to optimise our dataflow implementation that reduces runtime by a further 43% — an overall runtime reduction of 93%. We also assess the portability of our mean shift optimisations by trading off CPU runtime against resource utilisation on FPGAs. Applying all dataflow optimisations reduces FPGA design space significantly, requiring fewer slice LUTs and less block memory.

I. INTRODUCTION

Enormous growth in computer vision (CV) research has prompted increasing interest in embedded real-time systems application domains e.g., smart camera architectures [1], mobile robotics [2] and automotive applications (e.g., self drive cars). While traditional CV algorithms are often developed for execution on sequential desktop computers, real-time CV algorithms require hardware platforms with time and resource bound guarantees to process data-intensive video streams at high frame rates. Application-specific embedded hardware is often the preferred option despite relatively complicated and long development cycles compared to software implementations on general purpose processors.

Targeting embedded hardware for CV algorithm execution is a challenging and time consuming task, especially when implementing algorithms directly with low-level hardware description language (HDL), such as VHDL or Verilog. Dataflow languages are a higher level and modular abstraction that have been demonstrated to be a good fit for embedded systems programming. The dataflow model is used to implement digital signal processing (DSP) systems [3], and more recently have been adopted for stream based image processing [4] and reconfigurable video coding (RVC) [5] applications.

Although dataflow models are well suited for stream based application domains to the best of the authors knowledge mapping CV algorithms to the dataflow model to exploit parallel hardware is largely unexplored with a few notable exceptions [6]–[8]. One possible reason is that CV algorithms cannot trivially be parallelised. For example, global operators may be mapped over the entire image frame or feedback loops may be required to derive values from one frame as inputs to functions on subsequent frames — sequentialising opportunities for pipelined parallelism.

The process of porting sequential algorithms to dataflow models is not trivial, and a three-step process is proposed in [9]: a) decouple the algorithm into independent processing blocks (actors) and data flow (tokens) between these blocks, b) design a resource efficient computational architecture to exploit parallelism & c) map the algorithm onto target hardware. The steps are iterated to produce an optimised design. Optimisations can be reached using profile driven approaches to make small incremental improvements to dataflow graph structures and actor implementation code (Section II).

In this paper we use the mean shift visual tracking algorithm for single subject tracking [10] as a CV case study to assess the suitability of dataflow as a model for parallel implementation and optimisation of CV algorithms. This is a conscious choice as it has a proven convergence criteria and has substantial execution costs in computing 2D matrix operations and exhibits dynamic behaviour when estimating subsequent object tracking positions using an iterative optimisation. The RVC-CAL language [11] is used to implement mean shift. The contributions of this paper are threefold:

- We express a well known CV tracking algorithm using the dataflow model and implement a naive version in the RVC-CAL dataflow language.
- We use runtime tracing and dataflow profiling techniques for identifying and eliminating bottlenecks and implement optimised variants. The optimised versions reduces runtime of 43% on a 4 core CPU.
- We trade off CPU runtime performance with FPGA resource utilisation for all dataflow optimisations of the naive mean shift version, and discuss the portability of dataflow optimisation strategies.

II. PROFILE DRIVEN DATA-FLOW OPTIMISATION

Profile guided optimisation is used to shorten execution runtimes and to improve hardware resource utilisation across different architectures. Profilers have been embedded into compilers e.g., for automatic function inlining [12], into profile

Profile Driven Dataflow Optimisation of Mean Shift Visual Tracking

Deepayan Bhowmik & Andrew Wallace
School of Engineering and Physical Sciences
Heriot-Watt University, Edinburgh, UK
{D.Bhowmik,A.M.Wallace}@hw.ac.uk

Robert Stewart, Xinyuan Qian & Greg Michaelson
School of Mathematical & Computer Sciences
Heriot-Watt University, Edinburgh, UK
{R.Stewart,xq32,G.Michaelson}@hw.ac.uk
A. The algorithm

Mean shift [10] is a feature-space analysis technique for locating the maxima of a density function. An example of applying mean shift to image processing for visual tracking is shown in Fig. 2. The target is successfully tracked from the initial frame on the left, to the final frame on the right. The algorithm is a kernel based method normally applied using a symmetric Epanechnikov kernel within a pre-defined elliptical or rectangular window. The target region of an initial image is modelled with a probability density function (a colour histogram) identifies a candidate position in the next image by finding the minimum distance between models using an iterative procedure. A summary is given in Algorithm 1.

Algorithm 1: Summary of Mean-shift tracking

\begin{itemize}
 \item \textbf{Input:} Target position \(y_0 \) on 1st frame;
 \item Compute Epanechnikov kernel;
 \item Calculate target color model \(q_u(y_0) \)\ (e.g., using RGB color histogram);
\end{itemize}

\begin{algorithm}
 \begin{algorithmic}
 \State \textbf{repeat}
 \State \textbf{Input:} Receive next frame;
 \State Calculate target candidate color model: \(p_u(y_0) \);
 \State Compute similarity function \(\rho(y) \) between \(q_u(y_0) \) & \(p_u(y_0) \);
 \State \textbf{repeat}
 \State Derive the weights \(\omega \) for each pixel in target candidate window;
 \State Compute new target displacement \(y_1 \);
 \State Compute new candidate colour model \(q_u(y_1) \);
 \State Evaluate similarity function \(\rho(y) \) between \(q_u(y_1) \) \& \(p_u(y_1) \);
 \State \textbf{while} \(\rho(y_1) < \rho(y_0) \) \textbf{do}
 \State \textbf{Do} \(y_1 \leftarrow 0.5(y_0 + y_1) \);
 \State \textbf{Evaluate} \(\rho(y) \) between \(q_u(y_0) \) \& \(p_u(y_1) \);
 \State \textbf{end}
 \State \textbf{until} \(|y_1 - y_0| < \epsilon \) (near zero displacement);
 \State \textbf{Output:} \(y_1 \) (Target position for current frame);
 \State Set \(y_0 \leftarrow y_1 \) for next frame;
 \end{algorithmic}
\end{algorithm}

B. Functional decomposition with dataflow actor network

Our dataflow versions of mean shift have been implemented in the RVC-CAL dataflow language. It is a port of an existing sequential implementation in C++ [20]. Coarse grained functional components were de-coupled and mapped into separate actors that communicate computation results using token passing, shown in Fig. 3.

The Epanechnikov kernel and its derivatives are calculated in Actor kArray_evaluation and kArray_deriv, respectively. Their constant values are computed once because they depend on the size of the target window. These values are passed as streaming tokens cyclically to the update_model_f1, update_model and displacement actors. The update_model_f1...
and update_model actors calculate the colour models \(q_u(y_0)\) & \(p_u(y)\). The update_model actor calculates the histogram as a collection of bins. The histogram function is used to assign a particular RGB value to a bin in the feature space using the 3 values as an index into a 3D space modelled using a 1D array. Each bin \(u\) in the model is the normalised sum of all kernel values for the pixels in that bin.

Once the model \(q_u\) is calculated for the initial centre position on the first frame, subsequent frames are used to calculate the displacement \(y_1\) on each frame using a feedback loop representing steps in Algorithm 1. The update_weight actor derives the weights \(w_i\) for each pixel in the target candidate window, while the displacement actor computes the displacement \(y_1\) by Eq. (1).

\[
y_1 = \frac{\sum_{i=1}^{N} x_i w_i g()}{\sum_{i=1}^{N} w_i g()},
\]

where \(N\) is the number of pixels in the target window, \(x\) is each pixel’s relative position, its weight \(w_i\) and \(g()\) is the kernel derivative function. This is iterated by actors Centre_XY and Final_Centre_XY until the convergence criteria \(|y_1 - y_0| < \epsilon\) is met and uses a feedback loop controlled by boolean tokens passed to the loop_status port in the update_model actor. To read and write video streams (Fig. 3), two smaller actor networks have been developed (not shown) to a) convert raw YUV video streams into RGB channels, and b) emit raw YUV video streams with a red rectangle highlighting the tracking window on every frame.

IV. Optimisations

A. Abstract Dataflow Optimisations

The Orcc profiler (Section II) is used to identify mean shift bottlenecks in the context of high-level dataflow execution, by identifying actions on the critical path through the dataflow graph and finding where FIFOs are being starved of tokens.

1) FIFO Depth Reduction: A FIFO size of 32768 is needed to stream two consecutive YUV frames through the naive mean shift dataflow graph. Attempting to pass more frames through the graph deadlocked execution, suggesting that the naive version does not fully support the streaming model which is required for continuous tracking. For example, in order to pass 42 frames through the graph required a FIFO size of 1048576 and to pass 130 frames through required a FIFO size of 16777216. The Orcc profiler identified a starvation of tokens in the FIFO between the R, G and B ports and the update_model actor, because the tokens were not being consumed at the same rate by the update_model and update_model_f1 actors. The update_model_f1 was using RGB values to compute \(q_u(y_0)\) only once on the first frame, whereas the update_model was computing \(p_u(y)\) iteratively for consecutive frames. The remedy was to fuse both actors, merging their finite state machines (FSM) into update_model. The FSM was modified so that the action to compute \(q_u(y_0)\) is fired only once. The optimisation recovers the FIFO size back to 32768 to process any number of frames, and the algorithm now supports the streaming model for which results are presented in Section V.

2) Language Use Refinement: Tracing the naive mean shift version with the profiler shows intensive scheduling of actors that have only a small number of computationally inexpensive actions. For example, the workload of the kArray_evaluation actor was profiled at 12.2%, despite there being only two actions in the actor, one of which computed the Epanechnikov kernel with no token passing and another action called sendData transmitting the kernel values to colour model actors. The latter was initially implemented as a transmission action looping over the kernel size. The optimisation was to opt for a built-in RVC-CAL language construct repeat in the implementation of sendData. The profiler reports a workload reduction of 82% for the kArray_evaluation actor.

B. CPU Optimisations

The Intel VTune profiler (Section II) is used to trace CPU clock cycles for every line of C code for both actors and the runtime scheduler that the Orcc compiler generates, and identifies bottlenecks in the CPU scheduler and hotspots within action implementations.

1) CPU Runtime System IO: The naive mean shift was first profiled to identify the most severed bottlenecks. The mean runtime of computing mean shift over a sequence of 130 YUV frames of dimension 176 × 144 is 24.6s. The profile reported 41% of overall runtime was executing an actor responsible for writing YUV frames to file. We fixed the suspect IO operation by replacing costly fseek and fwrite calls with a .putc call in the runtime system, and the Orcc compiler was patched with this fix. The mean runtimes using this fix is 2.97s, a speedup of 8.3 reducing runtime by 88%. All remaining optimisation runtimes are measured using this runtime system scheduler optimisation.

2) Actor Fusion: In Orcc’s C backend, FIFOs are implemented as lock-free C std::structures shared between the source and sink actors that it connects. These become bottlenecks if token passing frequency between two actors is high either in the absence of a multicore CPU or because the computational granularity of the actors is too small. A solution is to fuse multiple actors to eliminate FIFO bottlenecks and the scheduling overheads of computationally inexpensive actors [21]. The primary cost of actor fusion is code modularity and reuse. Fusion optimisation is applied to the naive version, which uses three separate actors to 1) draw a tracking rectangle, 2) convert RGB values to the YUV colour space and 3) merging individual YUV channels into a single stream. The profiler reports runtimes of 0.25s, 0.26s and 0.29s respectively — a total of 0.8s. The optimisation involved fusing the FSMs of the three actors into a new single actor, and profiling reports a runtime of 0.33 for this actor — a runtime reduction of 59%.

C. FPGA Optimisations

1) Task Parallelism: Additional actors are introduced as a task parallelism optimisation for embedded dataflow hardware. By observing the dependencies between actors, and between
actions within actors, we identified the displacement actor as a candidate for a streaming optimisation. Its actions were unfolded into smaller independent actor due to the absence of data dependencies between these actions. This actor computes Eq. (1) which is decomposed into six actors, shown in Fig. 4. The CurPixelWeight actor maintains the interface with preceding actors using ports weights and kDerivArray, and broadcasts the current pixel weight, and X and Y values to three new actors WeightSum, XSUM and YSUM. Actors XSUM and YSUM compute the numerator of Eq. (1) in the X and Y direction respectively. The WeightSum actor calculates the denominator of Eq. (1) used by actors Cal_DX and Cal DY to compute the displacement y1.

2) Pipeline Parallelism and Memory Tuning: A major challenge of porting sequential algorithms to the dataflow model is availability of limited memory. Stream processing on FPGAs can overcome memory bottlenecks by pipelining operations. Dataflow imposes a share-nothing memory architecture. Therefore image processing algorithms must be refactored to reshape large N dimensional data structures into pipelines of isolated memory regions in actors. The naive RVC-CAL implementation used memory inefficiently in its faithful port of the C++ version. We adapt this FPGA optimisation technique by modifying the way YUV frames are streamed into the network of actors that compute tracking. For example, an actor is responsible for drawing a rectangular window around the tracked target. In the naive version, this actor stored all R, G and B values for an entire frame before using the tracking location to determine which pixels must be highlighted. The optimisation uses tracking location to highlight pixels on-the-fly if their position is within the tracking window criteria.

V. RESULTS AND DISCUSSION

The naive and optimised versions of meanshift algorithm are used to track a single target with a window size of 20×26 over 130 Q CIF YUV444 frames from a standard tracking sequence from PETS dataset [22] (S2.L1). They have been run on an Intel Core 2 Quad CPU at 2.8GHz with 6Gb DDR3 memory, running the 64bit Linux 3.15 kernel, and the C was compiled with gcc 4.8.3. They are also synthesised for the Virtex 6 XC6VLX550T FPGA board. The high level synthesis (HLS) Orce backend was used, and the VHDL was synthesised with Xilinx ISE 14.7.

The results are in Table I. It shows the CPU runtime and FPGA device utilisation for the naive mean shift version, each optimisation and then for all optimisations combined. CPU runtimes are reduced in four out of five cases. The FIFO optimisation yields a 31% shorter runtime compared the naive version using a FIFO size of 32768 instead of 16777216, a change enabled by this optimisation. Actor fusion reduced runtime by 10% and using the repeat RVC-CAL construct reduced runtime by 21%. Combining all optimisations gives a runtime of 1.70s using a FIFO size of 131072, a 43% runtime improvement over the naive version. The optimal mean shift version is available online [23]. The task parallel optimisation introduced six additional actors connected with 12 FIFOs, which is a potential CPU bottleneck and shared memory contention on RAM which is reflected in a 7% longer runtime.

The CPU optimisations to the dataflow graph result in big differences in FPGA device utilisation. There are nearly three times as many slice LUTs in the task parallelism optimisation, due to the expansion of the displacement actor into multiple actors. This change introduces an addition of six actors, 12 connections and 19 ports. The pipeline optimisation reduced block RAM use by 51% and there was no change in CPU runtime. The combination of all optimisations is a dataflow graph that synthesises to use 10% fewer slice LUTs, 12% more slice registers and 69% fewer block RAMs or FIFOs.

VI. CONCLUSIONS

This paper uses mean shift tracking to investigate profile driven dataflow graph transformation trading off CPU runtime performance with FPGA design space. Tuning the runtime system yielded 88% shorter runtimes and optimising the dataflow graph for CPU execution reduced runtimes by a further 43% — an overall improvement of 93%. Combining all optimisations reduced FPGA memory utilisation by 69%. We will next investigate formal methods for semi-automatic dataflow graph transformation, using predictive and runtime dataflow profiling to select optimal rewrite compositions. We will also investigate hardware constrained dataflow transformation in the context of an embedded image processing processor called IPPro we are developing in the Rathlin project.

ACKNOWLEDGEMENT

We acknowledge the support of the Engineering and Physical Research Council, grant references EP/K009931/1 (Programmable embedded platforms for remote and compute intensive image processing applications) and the Scottish Informatics and Computer Science Alliance sponsored internship through Scottish Resource Centre for Women.
REFERENCES

