A Convenient Synthetic Route to Partial-Cone p-Carboxylatocalix[4]arenes
Fairbairn, Robyn E.; Teat, Simon J.; Gagnon, Kevin J.; Dalgarno, Scott J.

Published in:
CHIMIA International Journal for Chemistry

DOI:
10.2533/chimia.2015.516

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Heriot-Watt University Research Portal

Citation for published version (APA):
A Convenient Synthetic Route to Partial-Cone \(p\)-Carboxylatocalix[4]arenes

Robyn E. Fairbairn*, Simon J. Teat*, Kevin J. Gagnon*, and Scott J. Dalgarno**

Abstract: \(p\)-Carboxylatocalix[4]arenes have emerged as useful building blocks for the construction of a diverse range of supramolecular assemblies. A convenient route to a \(p\)-carboxylatocalix[4]arene that is locked in a partial-cone conformation is presented. The conformation gives the molecule markedly different topological directionality relative to those previously used in self- and metal-directed assembly studies.

Keywords: \(p\)-Carboxylatocalix[4]arene • Supramolecular assemblies

The calix[4]arene framework (C[4], Fig. 1A) represents one of the most widely modifiable synthetic platforms in supramolecular chemistry.[1] In this regard significant effort has been invested in controlling the conformation of these molecules for a variety of reasons.[2] A good example of this can be seen when considering OH (or pairs of distal OH/alkoxy) groups at the lower-rim, with the molecules adopting a cone conformation as shown in Fig. 1A. In this conformation, C[4]s with varying upper-rim functionality (e.g. sulfonate,[3] phosphonate[4] and carboxylate[5,6]) possess molecular clefts that are perfectly suited to act as hosts towards a wide range of both organic and inorganic guests. Changes in lower-rim functionalisation, for example tetra-O-alkylation in the presence of different bases, provide access to the entire range of C[4] conformations shown in Fig. 1. Through synthetic control one can thus a) control the topological directionality of this platform and b) tune the nature of any resulting molecular cleft by careful selection of the group to be introduced at the C[4] lower-rim.

\(p\)-Carboxylatocalix[4]arenes (\(p\)CO\(_2\)\{4\}) have emerged as versatile building blocks for a) the template-directed assembly of non-covalent nanotubes and bi-layers,[5] and b) the metal-directed assembly of coordination polymers and nanometre-scale capsules.[6] The positioning and number of CO\(_2\)H groups around the upper-rim of the C[4] framework is important in controlling assembly properties and, although they appear simple from a synthetic perspective, isolation of these molecules can be challenging at times. As shown in Scheme 1, \(p\)-carboxylatocalix[4]arene (1) is accessed through an upper-rim two-step formylation via a bromomethyl intermediate, followed by oxidation.[7,8] Calix[4]arene lower-rim tetra-O-alkylation (with alkyl chains greater or equal in length to propyl) is known to lock the C[4] framework in a pinched-cone conformation, preventing rotation through the annulus. Compound 2 (Scheme 1) is accessed via lower-rim tetra-O-alkylation, upper-rim formylation and subsequent oxidation to afford the corresponding carboxylic acid.[9]

Given our interest in \(p\)-CO\(_2\)\{4\}-based self- and metal-directed assembly we recently began to investigate the introduction of a variety of groups to the lower-rim of the general \(p\)-CO\(_2\)\{4\} framework. As many of the groups we wished to introduce would not survive the conditions required for C[4] upper-rim functionalisation, it was necessary to find an alternative synthetic strategy to these new building blocks. As a starting point we explored esterification of compound 1 prior to lower-rim modification, the results of which are presented in this contribution.

Esterification of compound 1 was carried out by acid catalysis in ethanol to afford \(p\)-carboxyethylcalix[4]arene (3) as a brown solid in 72% yield (Scheme 2).[10] Analysis by \(^1\)H NMR spectroscopy confirmed that 3 was in a cone conformation as expected, which is driven by the presence of lower-rim OH groups, all of which hydrogen bond in concert to stabilise the...
arrangement. Compound 3 was recrystallised from a number of solvents in order to obtain supporting structural data. Slow evaporation of a pyridine solution of 3 afforded colourless single crystals that were suitable for diffraction studies.

Structure analysis showed the crystals to be in a monoclinic cell and structure solution was performed in the space group \(P2_1/n \). The asymmetric unit revealed formation of a pyridinium complex as shown in Fig. 2, with corresponding formula of [PyH][3-H]. Protonation of the pyridine occurs with simultaneous deprotonation of the lower-rim O(1) hydroxyl group in 3. The pyridinium cation is found to reside in the C[4] cavity, which is stabilised by concerted hydrogen bonding interactions; this occurs with three OH…O distances lying in the range of 1.667–1.994 Å. There are two CH…\(\pi \) interactions observed between the ortho and para H atoms on the [PyH][3-H] guest and the aromatic rings of [3-H], and these occur with H[43]…centroid and H[45]…centroid distances of 2.901 and 2.494 Å respectively (Fig. 2). In addition to this, the pyridinium cation forms one NH…OCOH and one CH…OCOH hydrogen bonding interaction with symmetry equivalent (s.e.) [3-H] anions to build up an extended H-bonded array; this occurs with respective H[11O]…O[12] s.e. and H[42]…O[8] s.e. distances of 1.864 and 2.307 Å (Fig. 3).

Following successful esterification of 1 (to give 3) we attempted lower-rim alkylation under analogous conditions to those used to alkylate C[4] in the synthetic pathway to compound 2 (Scheme 1).10 Reaction of 3 with iodopropane in the presence of NaH as a base in dmf, followed by recrystallisation from acetone, afforded colourless single crystals in 68% yield. It was immediately obvious from \(^1\)H NMR spectroscopy that the product was not in a cone conformation as desired, but rather that it had reacted in an alternative manner and become locked in a partial-cone arrangement. Structural analysis confirming this found single crystals of tetra-O-propoxy-p-carboxyethylcalix[4]arene (4) to be in an orthorhombic cell and structure solution was performed in the space group \(Pnma \). The asymmetric unit comprises one half of the molecule and symmetry expansion reveals the partial-cone conformation in 4 as shown in Fig. 4. Following this observation we attempted to isolate a sodium complex of 3 but were unsuccessful. We can only therefore conclude that there is an influencing interaction between the sodium ion and the upper-rim CO\(_2\)Et group rotated out of the cone prior to \(O\)-alkylation.

With formation of partial-cone 4 confirmed, subsequent saponification afforded the carboxylic acid derivative 5 (Scheme 2) as a yellow solid in 24% yield. Attempts were made to recrystallise 5 from a number of different solvents, and slow evaporation of a dmf solution did afford colourless single crystals that were suitable for diffraction studies. Structural analysis found the crystals to be in a monoclinic cell and structure solution was performed in space group \(C2/c \). The asymmetric unit comprises one molecule of 5 and two dmf of crystallisation as shown in Fig. 5A. One dmf forms hydrogen bonding interactions with the CO\(_2\)H group of the rotated aromatic ring with O[14]…H[100] and O[9]…H[48] distances of 1.777 and 2.423 Å respectively. Symmetry expansion results in the formation of a hydrogen-bonded head-to-head dimer, a motif seen for other pCO\(_2\)H \([11]\) in the absence of a solvent/species capable of interrupting the common CO\(_2\)H…CO\(_2\)H homosynth (Fig. 5B); this occurs through two crystallographically unique OCOH…OCOH hydrogen bonding interactions with respective H[8O]…O[12] and H[11O]…O[7] distances of 1.820 and 1.805 Å. The second dmf is disordered over two positions and was modelled in each at 50% occupancy. This also forms hydrogen bonding interactions with the CO\(_2\)H group of the splayed aromatic ring with O[13]…H[5O] and O[6]…H[45] distances of 1.787 and 3.230 Å respectively. Examination of the extended structure reveals that molecules/dimers pack in an anti-parallel bi-layer array as is often observed for such systems (Fig. 5C).15

To conclude, we have presented the synthesis of an unexpected partial-cone pCO\(_2\)H and have confirmed structural changes throughout the synthetic pathway via single crystal X-ray studies. Through comparison with the synthetic route for
cone-shaped tetra-O-propyl-p-carboxyethylcalix[4]arene, it is clear that the presence of upper-rim ester functionality has a dramatic effect on the prevailing conformation. Future work will focus on the use of partial-cone pCO₂[4]s in the formation of both non-covalent and metal-directed assemblies with a view to exploring the effects of this unusual conformation coupled with topological directionality. These results will be reported in due course.

Experimental

p-Carboxyethylcalix[4]arene (1) was synthesised according to literature procedures. CCDC 1404296 – 1404298 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

A solution of 3 (1.00 g, 1.40 mmol) dissolved in 50 mL DMF was placed in a 250 mL round-bottom flask. Sodium hydride (60%, 0.48 g, 11.90 mmol) was added and the mixture was heated to reflux for 1 h. The reaction was quenched by careful addition of MeOH and the solvents removed under reduced pressure to afford a yellow solid. The crude product was washed with water (2:1:1, 5 mL) and the mixture was filtered through a bed of Bröcker (2 × 50 mL). The solution was dried over MgSO₄ and the solvents evaporated to afford pure 3 as a yellow solid (63.0 mg, 24%). ¹H NMR (300 MHz, 25 °C, DMSO-d₆): δ = 12.23 (bs, 4H, COOH), 7.92 (s, 2H, ArH), 7.87 (s, 2H, ArH), 7.69 (s, 2H, ArH), 6.96 (s, 2H, ArH), 4.01 (m, 2H, OCH₂CH₃), 3.94 (d, J = 12.0 Hz, 2H, ArCH₂Ar), 3.74 (m, 10H, overlap of OCH₂CH₃ and ArCH₂Ar), 3.42 (m, 2H, OCH₂CH₃), 3.20 (d, J = 12.0 Hz, 2H, ArCH₂Ar), 1.91 (m, 4H, OCH₂CH₃), 1.74 (m, 4H, OCH₂CH₃), 1.08 (t, J = 7.4 Hz, 6H, OCH₂CH₃), 0.92 (t, J = 7.2 Hz, 3H, OCH₃), 0.55 (t, J = 7.2 Hz, 3H, OCH₃). ¹³C NMR (300 MHz, 25 °C, DMSO-d₆): δ = 167.46, 166.78, 160.29, 159.09, 136.17, 133.27, 132.81, 132.52, 131.60, 131.16, 130.43, 130.04, 128.55, 125.81, 122.93. MS m/z observed 898.4740, theoretical 898.4736 [M + NH₄]⁺. IR (solid phase, ν cm⁻¹): 3663w, 2969m, 2914m, 2875m, 1711s, 1676s, 1600w, 1599m, 1517w, 1427w, 1308s, 1283s, 1186s, 1140w, 1085w, 898w, 898w, 898w, 898w. Synthesis of Partial-cone Tetra-O-propoxy-p-carboxyethylcalix[4]arene, 5

Compound 4 (0.31 g, 0.35 mmol) and NaOH (0.17 g, 4.18 mmol) were dissolved in a mixture of THF, MeOH and water (2:1:1, 5 mL) and the mixture was heated at 50 °C for 3 days. The solution was acidified with 1M HCl, diluted with ethyl acetate and washed with water (2 × 50 mL) followed by brine (2 × 50 mL). The solution was dried over MgSO₄ and the solvents evaporated to afford pure 5 as a yellow solid (63.0 mg, 24%). ¹H NMR (300 MHz, 25 °C, DMSO-d₆): δ = 12.23 (bs, 4H, COOH), 7.92 (s, 2H, ArH), 7.87 (s, 2H, ArH), 7.69 (s, 2H, ArH), 6.96 (s, 2H, ArH), 4.01 (m, 2H, OCH₂CH₃), 3.94 (d, J = 12.0 Hz, 2H, ArCH₂Ar), 3.74 (m, 10H, overlap of OCH₂CH₃ and ArCH₂Ar), 3.42 (m, 2H, OCH₂CH₃), 3.20 (d, J = 12.0 Hz, 2H, ArCH₂Ar), 1.91 (m, 4H, OCH₂CH₃), 1.74 (m, 4H, OCH₂CH₃), 1.08 (t, J = 7.4 Hz, 6H, OCH₂CH₃), 0.92 (t, J = 7.2 Hz, 3H, OCH₃), 0.55 (t, J = 7.2 Hz, 3H, OCH₃). ¹³C NMR (300 MHz, 25 °C, DMSO-d₆): δ = 167.46, 166.78, 160.29, 159.09, 136.17, 133.27, 132.81, 132.52, 131.60, 131.16, 130.43, 130.04, 128.55, 125.81, 122.93. MS m/z observed 898.4740, theoretical 898.4736 [M + NH₄]⁺. IR (solid phase, ν cm⁻¹): 3663w, 2969m, 2914m, 2875m, 1711s, 1676s, 1600w, 1599m, 1517w, 1427w, 1308s, 1283s, 1186s, 1140w, 1085w, 898w, 898w, 898w, 898w.

Fig. 5. A) Selectively labelled asymmetric unit found in the single crystal X-ray structure of 5. B) Symmetry expanded structure showing a hydrogen-bonded head-to-head dimer. C) Extended structure showing the bilayer array. Hydrogen bonding interactions are shown as split-colour lines. Hydrogen atoms (apart from those involved in hydrogen bonding) have been omitted for clarity. DMF of crystallisation omitted for clarity in C.
Crystal data for \(\text{H}_8\text{N}_{14}\text{O}_{16} \), \(M = 915.02 \). Colourless plate, \(0.17 \times 0.13 \times 0.02 \) mm, monoclinic, space group \(C2/c \), \(a = 37.3004(15) \), \(b = 14.2873(6) \), \(c = 18.2486(8) \) Å, \(\beta = 93.557(2) ^\circ \), \(V = 9706.3(7) \) Å\(^3\), \(Z = 8 \), Bruker D8 Diffractometer operating with a PHOTON 100 detector, synchrotron radiation, \(\lambda = 0.77490 \) Å, \(T = 100(2) \)K, \(2\theta_{\text{max}} = 52.4^\circ \), 54147 reflections collected, 7495 unique (\(R_u = 0.0512 \)). Final Goof = 2.978, \(R = 0.3633 \), \(\text{R indices based on} \ 5993 \) reflections with \(I > 2\sigma(I) \) (refinement on \(F^2 \)).

Acknowledgments

We thank Heriot-Watt University for financial support of this work through the James-Watt Scholarship Scheme (studentship for REF), Mass spectrometry data was acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231.

Received: June 25, 2015

