Coriolis metering technology for CO2 transportation for carbon capture and storage
Lin, Chih Wei; Bhattacharji, Ayan; Spicer, George; Maroto-Valer, M. Mercedes

Published in:
Energy Procedia

DOI:
10.1016/j.egypro.2014.11.295

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Heriot-Watt University Research Portal

Citation for published version (APA):
Coriolis Metering Technology for CO₂ Transportation for Carbon Capture and Storage

Chih-Wei Lin*a, Ayan Bhattacharjib, George Spicerb, M. Mercedes Maroto-Valera,c

aCentre for Innovation in Carbon Capture and Storage (CICCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
bInterconnector (UK) Ltd, 8th Floor, 61 Aldwych, London, WC2B 4AE
cInstitute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Highly reliable and accurate Coriolis meters have been proposed for metering carbon dioxide in carbon capture and storage (CCS) operations to provide accurate flow measurements. However, there is a lack of calibration studies to quantify Coriolis measurements uncertainty for liquefied CO₂. In this study, a first of its kind apparatus was designed, built and used to calibrate an industrial scale Coriolis meter using CO₂ in liquid phase. The standard uncertainty of the meter was evaluated within the temperature range 290 to 293 K and at pressure 6.5 MPa.

Keywords: CCS, CO₂ metering, Coriolis meter, uncertainty, carbon dioxide

1. Introduction

Over the last two decades, there has been growing public concern [1, 2] about increasing CO₂ emissions [1] and the consequences in terms of climate change. Approximately 26 % of global CO₂ emissions were contributed from fossil fuel power generation [3, 4]. Therefore, carbon dioxide capture and storage (CCS) has been proposed as a short-term solution to significantly reduce CO₂ emissions [4]. CO₂ captured from power stations will be injected
into geological reservoirs to reduce these emissions [5-7]. Unfortunately, CCS has been slow to develop and achieve commercial success due to a lack of business models. Since accurate flow measurements are required for both commercial and regulatory purposes, a proven metering technology is required to accelerate CCS commercialization. Additionally, the UK Advanced Power Generation Technology Forum (APGTF) [8] have clearly stated that research and development for CO₂ accounting is needed to develop techniques for fiscal metering of CO₂ with impurities to an accuracy of ±2% in the gas phase and liquid phases. However, there are no published studies of accuracy in metering CO₂ in liquid phase. Accordingly, in this study, a calibration system was designed and built to evaluate the uncertainty for metering liquefied CO₂.

2. Material and experimental apparatus

A Coriolis meter was selected for this work, as it can directly measure mass and is expected to be hardly affected by temperature and pressure conditions [9]. The experimental method developed was based on a gravimetric calibration [10, 11]. Temperature, pressure and flow rate of the tests in this study were at temperature from (290 to 293 K), pressure at 6.5 MPa and flow conditions between (0.5 and 0.65 L/min). In this study, 99.9995 vol% of certified supercritical CO₂ from BOC was used. A calibration system was designed and built to determine measurement uncertainty of Coriolis meter using for liquid CO₂. A smallest industrial scale Coriolis meter (Krohne, OPTIMASS 6000-S08) with U tubes design was selected to quantify its uncertainty. A pressure transducer (GE, UNIK 5000) with 0.1% standard uncertainty and a thermo sensor integrated with Coriolis meter were used to monitor pressure and temperature during measurements. The calibration system was controlled via a data acquisition unit with data logged in automatically. Density, temperature and mass/volume flow rate from the Coriolis flow meter were recorded by A XFC 300 Data logger supplied by Krohne. The mass flow rate recorded by the Coriolis flow meter during a calibration was compared with that determined by the designed rig.

3. Results and discussion

Two calibration runs were conducted under different flow rates (0.5 and 0.65 L/min), temperature (290 to 293 K) and pressure at 6.5 MPa. During an experiment, completely constant temperature of the system was difficult to maintain due to friction heat generated by a piston pump head, leading to temperature fluctuation of 2 K. However, uncertainties evaluated were hardly affected because measured mass flow based on gravimetric calibration method is independent of temperature and pressure conditions [9]. Fig. 1 shows typical physical characteristics of the calibration run at pressure of 6.5 MPa with a pressure fluctuation of ±0.1 MPa, temperature between (290 and 292 K) and flow rate at 0.5 L/min. In Fig.1, all of densities of CO₂ recorded from Coriolis meter in the test runs are above 800 kg/m³ which indicate the calibration system was successful to remain measured CO₂ in liquid phase without any phase transition during a calibration.

Fig. 1. CO₂ physical parameters (temperature, pressure, volume flow rate and density) of a calibration run 1 recorded by the Coriolis meter
The measured error of Coriolis flow meter, u, was calculated using the following equation

$$ u = 100 \left(\frac{M_c dt - m_{\text{ref}}}{m_{\text{ref}}} \right) $$

(1)

Where M_c is mass flow rate measured from Coriolis meter and m_{ref} is mass of CO$_2$ pumped through Coriolis flow meter recorded by the high precision weight scale. m_{ref} is calculated from the equation below

$$ m_{\text{ref}} = m_{\text{cylinder}} + m_{\text{pipeline}} $$

(2)

Where m_{cylinder} is mass of CO$_2$ injected in storage cylinder and m_{pipeline} is mass of CO$_2$ collected in the collection vessel. The measurement errors, u, are presented in Table 1. The measurement errors obtained in this study are -0.14 % and 0.04 % at temperature from run 1 and run 2, respectively, where 0.025 % is due to the measurement uncertainty of the weight scale.

Table 1. Operating parameters and uncertainties measured using pure CO$_2$ in this study

<table>
<thead>
<tr>
<th>Run</th>
<th>Temperature (K)</th>
<th>Pressure (MPa)</th>
<th>flow rate (L/min)</th>
<th>Measurement error, u (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>290-292</td>
<td>6.5 ± 0.1</td>
<td>0.5 ± 0.05</td>
<td>0.04 ± 0.029</td>
</tr>
<tr>
<td>2</td>
<td>291-293</td>
<td>6.5 ± 0.1</td>
<td>0.65 ± 0.05</td>
<td>-0.14 ± 0.021</td>
</tr>
</tbody>
</table>

4. Conclusions

A calibration system for evaluating measurement uncertainty of a Coriolis meter for liquefied CO$_2$ has been designed and built. The physical parameters monitored in the calibration runs indicate that CO$_2$ successfully remained in the liquid phase without phase transition during a calibration. Accordingly, the system was tested and validated to be able to determine uncertainty of Coriolis meter using liquefied CO$_2$. The maximum uncertainty obtained in this study is 0.14 %, being far less than required uncertainty of 2 % stated by APGTF. Further measurements needed to be conducted over a wide range of temperature and pressure representative of CCS operation conditions to quantify more reliable, consistent measurement uncertainty of Coriolis meter using in CO$_2$ in the liquid phase.

5. Acknowledgements

The authors would like to acknowledge funding received for Project Comet – Coriolis Metering Technology in CO$_2$ Transportation by pipeline for CCS under the DECC Carbon Capture Storage Innovation Competition.

References

2. Royal Society, Ocean acidification due to increasing atmospheric carbon dioxide, London, 2005

