Abstract:

Relative permeabilities show significant dependence on the saturation path during CO$_2$ enhanced oil recovery (EOR) and Storage. This dependence (or hysteresis) is particularly important for water-alternating-gas (WAG) injection, a successful CO$_2$ EOR and storage method for clastic and carbonate reservoirs. WAG injection is characterized by an alternating sequence of drainage and imbibition cycles. Hysteresis is hence common and results in residual trapping of the CO$_2$ phase, which impacts the volume of CO$_2$ stored and the incremental oil recovery. The competition between hysteresis and geological heterogeneity during CO$_2$ EOR and storage, particularly in carbonate reservoirs, is not yet fully understood.

In this study, we use a high-resolution simulation model of a Jurassic Carbonate ramp, which is an analogue for the highly prolific reservoirs of the Arab D formation in Qatar, to investigate the impact of hysteresis during CO$_2$ EOR and storage in heterogeneous carbonate formations. We then compare the impact of residual trapping (due to hysteresis) on recovery to the impact of heterogeneity in wettability and reservoir structure. End-member wettability scenarios and multiple wettability distribution approaches are tested, while, effective fracture permeabilities are computed using discrete fracture networks (DFN), ranging from sparsely distributed background fractures to fracture networks where intensity varies with proximity to faults.

The results enable us to analyse the efficiency of oil recovery and CO$_2$ sequestration in carbonate reservoirs by comparing the impact of physical displacement processes (e.g., imbibition, drainage, residual trapping) and heterogeneous rock properties (e.g., wettability, faults, fractures, layering) that are typical in carbonate reservoirs. We show that although the fracture network properties have the greatest impact on the fluid flow, the effect of wettability and hysteresis is nontrivial. Our results emphasise the need for wettability to be accurately measured and appropriately distributed in a reservoir simulation model. Similarly, our results indicate that hysteresis effects in cyclic displacement processes must be accounted for in detail to ensure that simulation models give accurate predictions.

Keywords:

Wettability, Hysteresis, Residual Trapping, CO$_2$ EOR and Storage, Discrete Fracture Network
1. Introduction

Carbon capture and storage (CCS) in subsurface reservoirs can potentially contribute to reducing CO2 emissions and mitigating global climate change (e.g., Qi et al., 2009; Jenkins et al., 2012; Liu et al., 2012; Szulczewski et al., 2012; Petvipusit et al., 2014; Wriedt et al., 2014). CCS can be implemented simultaneously with CO2 enhanced oil recovery (EOR) to achieve mutual benefits of subsurface CO2 storage and increased oil production in depleted hydrocarbon fields. Oil reservoirs are particularly attractive for CO2 storage because the geology is relatively well known thereby reducing geological uncertainties associated with CO2 migration and geological storage (Kovscek, 2002; Kovscek and Cakici, 2005; Iding and Ringrose, 2010; Leach et al., 2011; Sohrabi et al., 2011; Liu et al., 2012; Ettehadtavakkol et al., 2014; Azzolina et al., 2015).

Carbonate reservoirs which are estimated to contain about 60% of global conventional and unconventional hydrocarbon resources (Beydoun 1998; Burchette, 2012; Agar and Geiger, 2015) form suitable candidates for CO2 EOR and storage because of the potentially large amounts of CO2 that can be sequestered in carbonate formations while improving hydrocarbon recovery (Liu et al., 2012). Carbonate reservoirs, however, are often difficult to exploit due to multiscale heterogeneities that arise from complex diagenetic, reactive, depositional and deformational processes, resulting in complicated subsurface flow behaviours. Carbonate reservoirs may also contain multiscale natural fracture networks that comprise complex high permeability flow paths in the reservoir (e.g., Guerreiro et al., 2000; Gale et al., 2004; Toublanc et al., 2005; Belayneh and Cosgrove, 2010). The variability in matrix structure and fracture network connectivity is the main reason why fractured carbonate reservoirs show a large variety of flow behaviours, leading to significant uncertainties in predicting CO2 plume distributions and hydrocarbon recovery (Cosentino et al., 2001; Bourbiaux et al., 2002; Makel, 2007).

The reliability of underground CO2 storage during EOR in fractured carbonate reservoirs depends on a number of interrelated trapping mechanisms. Structural trapping defines the geometry of the store within which more permanent storage can occur. Solubility trapping occurs when CO2 dissolves into the formation brine. Mineral trapping which entails geochemical binding of CO2 to the rock due to mineral precipitation, guarantees permanent
CO₂ immobilisation but on a scale of hundreds to thousands of years, too long to have a bearing on storage security over an operational period. Residual trapping is due to snap-off (or disconnection) of the CO₂ phase such that it becomes an immobile (trapped) phase when droplets of CO₂ become isolated from the CO₂ plume by encroaching brine (Juanes et al., 2006). Residual trapping occurs due to differences in the advancing and receding contact angles during repeat imbibition and drainage cycles. It is this sequestration mechanism, residual trapping, which occurs over years to decades (short-term storage), that we investigate in this study. Understanding the underlying physicochemical processes responsible for residual trapping can therefore provide a conservative estimate of CO₂ storage security over timescales in line with EOR projects (Bachu et al., 1994; Pruess et al., 2003; Juanes et al., 2006; Qi et al., 2008, 2009; Wilkinson et al., 2009; Burnside and Naylor, 2014).

We focus on the relationship between residual trapping of CO₂ and water-alternating-gas (WAG) injection which has been found to be a successful EOR mechanism for carbonate reservoirs (Christensen et al., 2001; Manrique et al., 2007; Awan et al., 2008; Kalam et al., 2011; Pizarro and Branco, 2012; Rawahi et al., 2012). CO₂ WAG injection combines the benefits of gas injection to reduce the residual oil saturation and water injection to improve mobility control and frontal stability (Fig. 1). Due to the cyclic nature of CO₂ WAG injection, hysteresis is common and leads to the residual trapping of CO₂. Hysteresis occurs as a result of the dependence of relative permeability and capillary pressure curves on the saturation history (Fig. 2). Only hysteresis models are able to capture the overall benefit of residual trapping, which lies in the fact that it can safely trap CO₂ in the subsurface while reducing the overall CO₂ phase mobility and improving enhanced oil recovery estimates (Spiteri and Juanes, 2006; Burnside and Naylor, 2014).

Several models have been developed to account for hysteresis during multiphase flow in subsurface reservoirs. They are based on the use of scanning curves in which the direction of saturation change is reversed at a number of intermediate saturations. Killough’s (1976) two-phase hysteresis model accounts for hysteresis as a function of the Land trapping parameter (Land, 1968). This model allows for reversibility of drainage and imbibition cycles along the same scanning curve. Carlson’s (1981) model accounts for hysteresis by predicting the trapped non-wetting phase saturation via shifting of the bounding imbibition curve.
Fig. 1. Conceptual model of immiscible CO₂ WAG injection. Water and CO₂ are injected through same well, generating two- and three-phase regions. CO₂ WAG injection combines the benefits of gas injection to reduce the residual oil saturation and water injection to improve mobility control and frontal stability.

Fig. 2. Relative permeability curves (a, b) illustrating hysteresis and residual CO₂ trapping during WAG injection. Hysteresis effect is more significant for the non-wetting CO₂ phase (a). Scanning curves illustrate the maximum trapped fraction (Sᵣ, Sᵢ) corresponding to the maximum CO₂ saturation (Sᵢ_max, Sᵣ_max) at flow reversal (b). Superscripts d and i refer to drainage and imbibition respectively.

The Carlson (1981) model, which also employs reversible scanning curves, is only adequate if the intermediate scanning curves are almost parallel and the imbibition curve has minimal curvature. Three-phase hysteresis models have been developed that represent non-reversibility (or cycle dependence) of scanning curves during hysteresis (e.g. Lenhard and Parker, 1987; Lenhard and Oostrom, 1998; Larsen and Skauge, 1998; Egermann et al., 2000; Shahverdi et al., 2014; Beygi et al., 2015) and are thought to include the essential flow physics during cyclic flooding. Furthermore, detailed numerical models which represent...
Hysteresis mechanisms at the pore scale (e.g., Blunt et al., 2002; Jackson et al., 2003; Joekar-Niasar et al., 2008, 2012) can increase our understanding of the pore scale physics of hysteresis and residual trapping during cyclic displacement processes.

Hysteresis is also influenced by wettability. Knowledge of the wetting preference and its variation in a carbonate reservoir rock is fundamental to understanding flow behaviour during CO₂ EOR and storage but is difficult to quantify due to the intrinsic heterogeneity of carbonates (Okasha et al., 2007; Ferno et al., 2011; Dernaika et al., 2013). Several authors (e.g., Kovscek et al., 1993; Jadhunandan and Morrow, 1995; Blunt, 1997; Hui and Blunt, 2000; van Dijke et al., 2001; Al-Futaisi and Patzek, 2003; Valvatne and Blunt, 2004; Ryazanov et al., 2009, 2010) have demonstrated how wettability changes alter relative permeability functions, using a number of drainage and imbibition simulations and experiments where the range of advancing and receding contact angles was modified. They found that during imbibition, the transport properties of permeable porous media are sensitive to the hysteresis between receding and advancing contact angles. This difference ultimately controls the amount of trapped fluids due to hysteresis and needs to be captured in reservoir simulation models.

The aim of this study is to investigate the effect of residual trapping (due to hysteresis) on CO₂ EOR and storage in relation to the multiscale heterogeneities that are pervasive in fractured carbonate reservoirs. Residual trapping is demonstrated using hysteresis models with reversible scanning curves during WAG imbibition and drainage cycles. In the context of WAG, we use the following notation for the remainder of the paper. The term “imbibition” refers to the displacement of gas by increasing gas saturation while the term “drainage” refers to the displacement of liquid by increasing gas saturation.

The fracture system is represented with discrete fracture network (DFN) models generated using detailed geological observations. The DFN is then upscaled to obtain effective permeability tensors for the fracture grid that is coupled to the matrix using a dual-porosity dual-permeability model. Because the specific geometry of the DFN is difficult to constrain, we investigate three distinct hypotheses for the evolution of the fracture system; (1) Regional fracture geometry which represents a pervasive background fracture system (2) Fault related fracture geometry where fractures cluster around faults and decrease in
intensity as the distance to faults increase (3) Bedding related fracture geometry where the fractures are stratigraphically confined to the bedding and give rise to high fracture permeability layers.

Since the structural, multiphase flow and transport properties encountered in the reservoir exhibit such significant uncertainties, we use multiple numerical simulations to analyse the following questions: How can we improve our understanding and prediction of subsurface flow behaviour during CO$_2$ EOR and storage under geological uncertainty? By investigating the range of uncertainties in wettability, residual trapping and the fracture network, can we rank their impact on the efficiency of CO$_2$ EOR and storage in fractured carbonate formations? What engineering measures can be used to mitigate the effect of geological uncertainties? Can we use our workflow to screen different CO$_2$ EOR and storage projects, determine the best solutions for specific reservoirs and identify optimum CO$_2$ EOR and sequestration strategies? Is there a competition between maximising CO$_2$ EOR and maximising CO$_2$ storage?

2. Setup of Numerical Simulation Models

2.1 Geological description of the fractured carbonate reservoir

This study is based on a flow simulation model constructed for the Amellago Island Outcrop, a Jurassic carbonate ramp in the High Atlas Mountains of Morocco in North Africa (Fig. 3). The outcrop is an analogue for one of the most important carbonate formations in the Middle East, the Arab D formation in Qatar (Pierre et al., 2010; Amour et al., 2013; Agada et al., 2014). Significant structural and lithological heterogeneity was observed in the outcrop including sub-seismic faults and fractures. The influence of faults is most notable in the extent to which fault-zone materials affect cross-fault flow. Where there is significant cementation within the fault and/or fault-zones, the faults may act as seals or baffles that compartmentalize the reservoir. Otherwise, the juxtaposition of high and low permeability layers due to displacement across the faults may limit but not totally impede cross-fault flow. Other geological features captured in the matrix of the flow simulation model include oyster bioherms, mud mounds, diagenetic hard-grounds and channelling. A detailed
description of the geological modelling, upscaling, dynamic model construction and permeability distribution for the Amellago outcrop analogue reservoir is presented in Agada et al. (2014).

2.2 Matrix Simulation Model

The flow simulation model (Fig. 3) which captures key structural and sedimentological heterogeneities observed in the Amellago Island outcrop is discretized into 74 x 75 x 36 grid cells (199,800 grid cells in total) and has dimensions of 1.15 x 1.17 x 0.11 km. Permeability and porosity for the facies in the outcrop were modelled using data from real subsurface reservoirs to ensure a realistic distribution of reservoir quality. At the reservoir model grid-block scale, the matrix porosity varies from 0.01% to 38% while the matrix permeability varies from 0.01 mD to 855 mD (Fig. 4). WAG injection was simulated using 10 alternating cycles during which 0.075 PV of water followed by 0.075 PV of gas was injected per cycle. The WAG ratio was set to 1:1 and the cycle length to 1 year to ensure proper gravity segregation of injected fluids. A regular five-spot well pattern was used with a vertical producer at the centre of the model and four vertical injectors situated at the corners of the model. The injector-producer spacing was approximately 400 m and the wells were completed across the entire reservoir interval. The injectors were set to operate at target liquid rate subject to a maximum bottom-hole pressure (BHP) constraint of 41,369 kPa, while the producer was set to operate at a target liquid rate subject to a minimum BHP of 16,547 kPa. These pressures were specified to ensure that a pressure gradient of 11-45 kPa/m was encountered in the reservoir model at all times. The reservoir was assumed to have an isothermal reservoir temperature of 121°C, an initial reservoir pressure of 20,684 kPa and a bubble point pressure of 11,367 kPa. The reference densities of water, oil and CO₂ were set to 1000 kg/m³, 800 kg/m³ and 1.35 kg/m³ respectively, while, the reference viscosities of water, oil and CO₂ were set to 0.31 cp, 0.52 cp and 0.02 cp respectively.

All simulations have been carried out using the black oil simulator IMEX (CMG). The black oil model represents the multi-phase multi-component system of reservoir fluids through three pseudo components: water, oil and gas. These three components form three phases: an aqueous phase that only consists of the water component, a gas phase that consists only of the gas component, and an oil phase that is formed by oil but dissolves gas. The density and
viscosity of the oil phase depend on its composition (Dake, 1998). In this study, we address CO₂ EOR and storage and hence assign CO₂ properties to the gas phase and component. The black oil model limits the overall computational cost while allowing us to represent features of interest including mass conservation, buoyancy, viscosity alteration, hysteretic phenomena, fracture-matrix exchange and relatively large spatial domains. Our approach is consistent with previous studies which have used the black oil model to investigate CO₂ EOR and/or CO₂ storage in geological reservoirs (e.g., Egermann et al., 2000; Jessen et al., 2005; Juanes et al., 2006; Spiteri and Juanes, 2006; Benisch and Bauer, 2013; Petvipusit et al., 2014).

In order to complete the entire study within a realistic time frame, we make a few simplifying assumptions that allow us to investigate the interactions between the features of interest and provide insights on the flow dynamics during CO₂ EOR and Storage. First, we focus on displacement scenarios where the reservoir pressure is below the minimum miscibility pressure (MMP) and as such oil and CO₂ are immiscible. Secondly, we do not consider the effects of physical dispersion which for large scale displacement processes is often minimal and/or masked by numerical dispersion. Thirdly, we represent two-phase and three-phase relative permeability and capillary pressures with standard models (i.e. the Corey and Stone models, respectively, see below) that are available in IMEX.
Fig. 3. Matrix simulation model of the Amellago Island Outcrop, showing the horizontal permeability distribution. The model dimensions are 1.15 x 1.17 x 0.11 km. Individual grid blocks have dimensions of 15x15x3m.

Fig. 4. Porosity-Permeability distribution (a) and permeability histogram (b) for the matrix used in the reservoir simulation model. Note that the data refers to the porosity and permeability values assigned to the reservoir model grid blocks.

For reference, we provide a brief summary of the black oil model equations. A detailed mathematical description of the black oil formulation can be found elsewhere (e.g., Dake, 1998; Chen et al., 2006). Lowercase and uppercase subscripts are used to denote phases and components, respectively. The mass conservation equations for the three components; water, oil, and gas, are given by:

\[
\frac{\partial (\phi \rho_w S_w)}{\partial t} = -\nabla \cdot (\rho_w v_w) + q_w
\]

(1)

\[
\frac{\partial (\phi \rho_o S_o)}{\partial t} = -\nabla \cdot (\rho_o v_o) + q_o
\]

(2)

\[
\frac{\partial}{\partial t} \left(\phi (\rho_o S_o + \rho_g S_g) \right) = -\nabla \cdot (\rho_o v_o + \rho_g v_g) + q_g
\]

(3)
for the water, oil and gas components, where, ρ_{go} and ρ_{oo} denote the partial densities of
the gas and oil components in the oil phase, respectively. ϕ, ρ, S, v, q represent the porosity,
density, saturation, velocity and the source/sink term respectively. These conservation laws
are complemented by constitutive equations. The velocities are given by Darcy’s law for
each phase as:

$$v_\alpha = -\frac{k_{ra}}{\mu_{\alpha}} K (\nabla P_\alpha - \rho_{\alpha} \gamma \nabla z), \quad \alpha = w, o, g,$$

(4)

where, K, γ and ∇z denote the total permeability, gravity term and depth respectively.
Similarly, k_r, μ and ∇P denote the phase relative permeability, phase viscosity and phase
pressure change respectively. The phase pressures are related by capillary pressures, P_c, where:

$$P_{cow} = P_o - P_w, \quad P_{cgo} = P_g - P_o$$

(5)

Furthermore, the whole pore-space is filled by the mixture and hence the contribution of
each phase is given by:

$$S_w + S_o + S_g = 1$$

(6)

The complex pore-scale interaction between the individual phases is represented by
empirical relationships for capillary pressure and relative permeability. Here, we follow the
standard approach and assume that first order effects are captured by algebraic functions
that only take saturations as arguments. For two-phase systems, parameterized curves are
fitted to experimental data. Here, we use the Corey (1954) parameterizations for relative
permeability and capillary pressure which for an oil-water system is given by,

$$k_{rw} = k_{rw,max} \left(\frac{S_w - S_{wi}}{1 - S_{wi} - S_{orw}}\right)^m$$

(7)

$$k_{ro} = \left(\frac{1 - S_w - S_{orw}}{1 - S_{wi} - S_{orw}}\right)^n$$

(8)
\[P_c = P_{c_{th}} + \left(\frac{1 - S_{wn}}{1 + aS_{wn}} \right) (P_{\text{max}} - P_{c_{th}}) \] (9)

\[S_{wn} = \left(\frac{S_w - S_{w_{ir}}}{1 - S_{w_{ir}}} \right) \] (10)

where \(m \) and \(n \) are the Corey exponents for relative permeability to water and oil. \(P_{c_{th}} \) denotes the threshold capillary entry pressure, while, \(a \) denotes an adjustable constant used to fit experimental data. \(S_{wn} \) represents the normalized water saturation. The parameterizations for the oil-gas system follow similarly. The oil-water and gas-oil relative permeability and capillary pressure curves generated with the Corey (1954) formulation were intended to mimic the average behaviour of carbonates such as those discussed in Clerke (2009) and to cover a wide range of wettability scenarios from water-wet to oil-wet (Fig. 5).

Measurement of relative permeability for three-phase systems is time-consuming and very challenging. Therefore, empirical expressions that obtain three-phase relative permeabilities by combining two phase data are commonly employed (e.g., Stone 1970, 1973; Baker, 1988; Blunt, 2000). Here, we use the Stone II interpolation model (Stone, 1973) to compute three-phase relative permeabilities. The Stone II formulation assumes that the functions for the most and least wetting fluid depend only on their saturation and are obtained from the two-phase system with the intermediate wetting fluid. In water-wet reservoirs, water is the most wetting, gas the least wetting and oil the intermediate wetting fluid. In oil-wet reservoirs the role of water and oil are reversed. In a water-wet reservoir the relative permeability to oil is obtained by an interpolation between the relative permeability to oil in an oil-water system and the relative permeability to oil in an oil-gas system. The Stone II model is given by:

\[k_{ro}(s_w, s_g) = k_{ro_{cw}} \left(\frac{k_{raw}(s_w)}{k_{ro_{cw}}} + k_{rw}(s_w) \left(\frac{k_{rog}(s_g)}{k_{ro_{cw}}} + k_{rg}(s_g) \right) \right) - k_{rw}(s_w) - k_{rg}(s_g), \]
where k_r and S represent the relative permeability and fluid saturation respectively. The subscripts o, w, g and cw represent oil, water, gas and connate-water respectively.

We note that the appropriate representation of three-phase systems is subject to active research including 3D pore-network models that encapsulate laboratory observed microscopic displacement processes (e.g., Blunt, 2000; Piri and Blunt, 2005; Al-Dahli et al., 2013, 2014) and novel interpolation methods (e.g., Shervadi and Sohrabi, 2012; Beygi et al., 2015). However, for the relatively large spatial domain and volumetric displacement encountered in this study, the simulation results do not change when interpolation models are varied, hence, it was sufficient to use the industry standard Stone II model which is available in IMEX.

While it is common to model relative permeability and capillary pressure as algebraic relations that only depend on the current saturation, it is well established that these functions can depend on the saturation history. We have used the Killough (1976) hysteresis model to account for the path dependency of the relative permeabilities during alternate drainage and imbibition cycles. The Killough model is a computationally efficient approach that sufficiently captures the hysteresis effects encountered in this study. For the relative permeability, the Killough hysteresis model is given by:

$$
\begin{align*}
 k_{rg}^d(S_g) &= k_{rg}^d(S_g^*) \frac{k_{rg}^d(S_{gi})}{k_{rg}^d(S_{gi,max})} \\
 S_g^* &= S_{gt,max} + \frac{(S_g - S_{gt})(S_{gi,max} - S_{gt,max})}{S_{gi} - S_{gt}}
\end{align*}
$$

Capillary pressure curves also exhibit hysteresis effects and several models have been developed to represent capillary pressure hysteresis (e.g., Killough, 1976; Lenhard and Parker, 1987; Lenhard and Oostrom, 1998). In practice, however, capillary pressure hysteretic effects are often negligible when simulating field-scale displacement processes such as in our study where the capillary length is much less than the grid resolution (e.g., Aziz and Settari, 1979; Spiteri and Juanes, 2006; Juanes et al., 2008; Agada et al., 2014).
Hence, we do not consider capillary pressure hysteresis in the current study but refer to Doster et al. (2013a) for a detailed description of capillary pressure hysteresis effects.

Table 1. Main parameters used to generate two-phase relative permeability and capillary pressure curves with Corey equations.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Wettability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Water-wet</td>
</tr>
<tr>
<td>Maximum Water Relative Permeability</td>
<td>(K_{rw, max})</td>
<td>0.20</td>
</tr>
<tr>
<td>Initial Water Saturation</td>
<td>(S_{wi})</td>
<td>0.22</td>
</tr>
<tr>
<td>Residual Oil Saturation</td>
<td>(S_{orw})</td>
<td>0.26</td>
</tr>
<tr>
<td>Oil Corey Exponent</td>
<td>(m)</td>
<td>2.50</td>
</tr>
<tr>
<td>Water Corey Exponent</td>
<td>(n)</td>
<td>4.50</td>
</tr>
<tr>
<td>Fitting Constant</td>
<td>(a)</td>
<td>120</td>
</tr>
<tr>
<td>Maximum Capillary Pressure (kPa)</td>
<td>(P_{max})</td>
<td>483</td>
</tr>
</tbody>
</table>
The common assumption in reservoir simulation studies for the wettability of reservoir rock is that it is constant and water wet. However, wettability typically varies both laterally and vertically. In particular the exposure to oil over geological time-scales may alter the wetting property of a reservoir rock. In this paper, we also address the impact of heterogeneous wetting properties. We compare a depth based distribution approach and a facies based distribution approach to the homogeneous approach. Distributing the wettability on the basis of variation with depth (Fig. 6a) is consistent with the method employed in previous field studies for clastic and carbonate reservoirs (e.g., Jerauld and Rathmell, 1997; Jackson et al., 2003, 2005; Okasha et al., 2007). An alternative method involves distributing the wetting properties by correlating the wettability to the horizontal permeability of individual simulation grid cells (Fig. 6b) based on the facies types (e.g., Clerke, 2009; Agada et al., 2014). We considered multiple wettability distribution approaches because the wettability is only represented in qualitatively adjusted relative permeability and capillary pressure.
functions to mimic the behaviour of real carbonate reservoirs and the approaches considered seemed to be the most feasible, although, they may be too simplistic for real carbonate reservoirs (Gomes et al., 2008; Hollis et al., 2010; Chandra et al., 2015).

![Fig. 6. Distribution of wettability in the simulation model using (a) depth based approach (DBA) and (b) facies based approach (FBA). DBA distributes wettability based on variation with depth while FBA correlates wettability to the horizontal permeability of individual grid blocks based on the facies type.]

2.3 Fracture-Matrix Interaction

The special nature of fractured reservoirs lies in the interaction between the low permeability matrix which provides the main storage in the reservoir and the high permeability fracture system which has low storage. This combination of low-permeability matrix and high-permeability fractures leads to variety of flow behaviours in fractured carbonate reservoirs, including permeability enhancement, flow anisotropy, structurally induced bypassing of oil and rapid water/CO₂ breakthrough. These behaviours must be understood to adequately predict long-term reservoir behaviour. Therefore, special care is required to capture the geological complexity of fracture systems in a form that can be represented in reservoir models. Discrete fracture network (DFN) models are commonly used to generate static fracture models (Dershowitz et al., 2000). The models are then calibrated to dynamic data from well tests or production logging tests (e.g., Wei et al., 1998;
Hoffman & Narr, 2012) before they are upscaled to provide permeability distributions for the fracture network. In commercial reservoir simulators, the fracture system, modelled and upscaled using the DFN approach, is coupled to the matrix system using dual-continuum models (e.g., Bourbiaux et al., 2002; Casabianca et al., 2007).

The interaction between fracture and matrix depends on the matrix properties (e.g., porosity, permeability and wettability) and the fracture network geometry. The interaction also depends on the displacement mechanisms and physical processes. Fracture-matrix fluid transfer during water injection in a naturally fractured reservoir is controlled by viscous, gravitational, and capillary forces (e.g., Lu et al., 2008)). The rate of fracture-matrix fluid exchange can be modelled using a transfer function that depends on the matrix wettability, matrix permeability and fracture intensity (e.g., Lu et al., 2008; Abushaikha & Gosselin, 2008; Ramirez et al., 2009; Al-Kobaisi et al., 2009). Spontaneous imbibition, i.e. capillary forces, displace oil from the matrix due to the counter-current flow of water in water-wet rocks but this effect decreases with decreasing water-wetness (Morrow and Mason, 2001; Schmid & Geiger; 2012, 2013). During CO₂ injection, gravity drainage controls the transfer of CO₂ into the matrix and concurrently the transfer of oil from the matrix into the fracture due to fluid density differences. This transfer mechanism is particularly important for mixed- to oil-wet reservoirs such as carbonates because the gravitational head can overcome the capillary entry pressure for the displacing gas phase (Di Donato et al., 2007; Lu et al., 2008).

2.4 Fracture Network Modelling and Upscaling

The fracture system was modelled using the DFN approach (Dershowitz et al., 2000) and honours detailed geological observations in the outcrop. Shekhar et al. (2010) identified three major fracture sets (Table 2 & Fig. 7). The mean fracture length was 20 m, while the aspect ratio (length to height) was 4:1. Variation of the fracture length with respect to the mean was defined using an exponential distribution. Fracture apertures with a mean of 0.5 mm were used to estimate fracture permeabilities from the cubic law.

Although, the models honour static observations of the fracture orientation, it is difficult to adequately capture the connectivity of the fracture network. Hence, the uncertainty in
fracture connectivity is investigated by varying the fracture network volumetric intensity (P32). As previously noted, we investigate three distinct fracture geometry scenarios. First, we investigate a pervasive regional fracture scenario where the stochastic fracture intensity is constant across the whole model and defined by intensity values which vary from a poorly-connected system to a well-connected system (Fig. 8). We also investigate a bedding related fracture scenario defined in relation to bed-bound (stratigraphically confined) and interbedded fractures (Fig. 9). Finally, we investigate a fracture scenario where the fracture intensity is related to the fault zone. In this case, high fracture intensity close to the faults decreases away from the faults (Fig. 10). In our modelling we focus on open fractures and do not consider closed fractures that might have formed as a result of secondary mineralization. Vertical wells intersect fractures in all cases.

Table 2. Fracture sets used for stochastic fracture generation in all DFN models

<table>
<thead>
<tr>
<th>Type of distribution</th>
<th>Dip direction</th>
<th>Dip</th>
<th>Fracture length</th>
<th>Fracture aperture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set 1</td>
<td>Fisher</td>
<td>275</td>
<td>74</td>
<td>20 m</td>
</tr>
<tr>
<td>Set 2</td>
<td>Fisher</td>
<td>315</td>
<td>75</td>
<td>20 m</td>
</tr>
<tr>
<td>Set 3</td>
<td>Fisher</td>
<td>345</td>
<td>76</td>
<td>20 m</td>
</tr>
</tbody>
</table>
Fig. 7. Schmidt diagram showing the orientation distribution of three fracture-sets (red, green, blue) with equal projection of the poles in the upper hemisphere (a) and contoured density of fracture poles (b) based on fractures generated for the 3D reservoir model.

Fig. 8. Discrete fracture network for regional fracture scenario with fracture intensity of 0.05 m2/m3 (a), 0.1 m2/m3 (b) and 0.2 m2/m3 (c).

Fig. 9. Discrete fracture network for bedding related fracture scenario. 70% of the fractures terminate within a single bed, while 30% of the fractures penetrate multiple beds. The average fracture intensity for the entire model is 0.1 m2/m3.
Fig. 10. Fracture intensity property (a) and discrete fracture network (b) for fault-related fracture scenario. The average fracture intensity for the entire model is 0.1 m²/m³.

Fig. 11. Fracture permeability histogram for (a) regional, (b) fault related and (c) bedding related fracture scenarios. Note that fracture permeability assigned to the reservoir model grid blocks is on average about ten times higher than matrix permeability (see figure 4).

Fig. 12. Upscaled fracture permeability distribution for (a) regional, (b) fault related and (c) bedding related fracture scenarios. Average fracture intensity is 0.1 m²/m³ for all cases. Note high fracture permeability around faults in (b) and high fracture permeability layers due to stratigraphically confined fractures in (c).

Fracture network flow parameters for each DFN were obtained by upscaling the fracture networks to the grid cells of the simulation model (Fig. 11 & 12). We have chosen to use the modified Oda (1985) DFN upscaling method that is more computationally efficient than flow-based DFN upscaling and accurate for fracture systems with good connectivity. DFN upscaling, results in diagonal fracture permeability tensors that are anisotropic and heterogeneous and honour outcrop observations reasonably well.

We tested the use of linear (and non-linear) two-phase relative permeability curves to account for multiphase flow in the fractures but the simulation results were identical due to the small volume and the high permeability of the fractures. In such cases, intermediate saturations do not occur and the flow is not determined by the specific shape of the relative permeabilities. Hence, it was sufficient to use linear relative permeabilities in this study. If
smaller fracture apertures and consequently lower fracture permeabilities are encountered, the intermediate saturations may have a greater influence on the simulation results and it is expected that non-linear curves would be employed.

Due to the, in parts, relatively high permeability in the matrix, a dual-porosity dual-permeability model was used to couple fluid flow in the matrix with fluid flow in the fractures and simulate multiphase flow for the range of plausible geological scenarios. It is well known that the dual permeability formulation is preferable in situations where there is hydraulic continuity in the matrix and high variability in the connectivity of the fracture network (Kazemi et al., 1992; Bourbiaux, 2002).

For a single-phase, dual-porosity dual-permeability model, flow in the matrix is given by:

\[\nabla \cdot \left(\frac{k_m}{\mu} \nabla p_m \right) - \frac{\sigma k_m}{\mu} (p_f - p_m) + q_m = \phi_m c_{tm} \frac{\partial p_m}{\partial t}, \]

(14)

while flow in the fractures (with an additional term for matrix flow contribution) is given by:

\[\nabla \cdot \left(\frac{k_f}{\mu} \nabla p_f \right) - \frac{\sigma k_m}{\mu} (p_f - p_m) + q_f = \phi_f c_{tf} \frac{\partial p_f}{\partial t}, \]

(15)

where, \(k_f, p_f, q_f, \phi_f, c_{tf} \) and \(k_m, p_m, q_m, \phi_m, c_{tm} \) represent the fracture and matrix permeability, pressure, source/sink, porosity and total compressibility respectively. \(\mu \) is the fluid viscosity and \(\sigma \) is the shape factor which describes the area of fracture-matrix interface in each grid block. \(\sigma \) is obtained directly from DFN upscaling.

We used the Gilman and Kazemi (1983) transfer function to model the fluid exchange between fracture and matrix. The transfer function is a conservation of momentum formulation that takes oil expansion, capillary imbibition and gravity drainage recovery mechanisms into account. The transfer function follows the classic Warren-Root (1963) assumption that the flow towards the well bore takes place in the fracture network while the matrix feeds the system with stored hydrocarbons. Equations (16) and (17) describe the Gilman and Kazemi formulation for the transfer of oil and water between fracture and matrix domains.
where T_o represents the transfer of oil from the matrix to the fractures and T_w represents the transfer of water from the fractures to the matrix in the case of capillary imbibition. k_{ro} and k_{rw} are the oil and water relative permeabilities, respectively. g is the gravity term while h is the height of the matrix blocks. ρ_o, ρ_w represent the oil/water density and S_{swD} is the dimensionless water saturation. We also tested the Quandalle and Sabathier (1989) transfer function which is known to capture gravitational flow more accurately but found the results to be identical.

The resulting reservoir models, containing fractures and matrix, are populated with the same fault network, mapped using high-resolution photopanels and LiDAR (Light Detection And Ranging). The faults are represented as discrete non-volumetric features in the geological model. In general, we consider the faults to be fully conductive, with flow reduction across faults occurring only due to the juxtaposition of high and low permeability layers. More detailed fault models are not within the scope of this study.

3. Results

3.1 Effect of fracture network intensity

Figure 13 shows upscaled fracture permeabilities and the corresponding matrix saturation distributions for the DFN models assuming P32 of 0.05 m2/m3, 0.1 m2/m3, 0.2 m2/m3 and 0.4 m2/m3 (a, b, c and d). The oil saturation distributions (e, f, g and h) and CO$_2$ saturation distributions (i, j, k and l), show a clear link between the fracture intensity and the predicted oil and CO$_2$ distributions. As the fracture intensity increases, there is more rapid transport of injected water and CO$_2$ leading to significant bypassing of oil in the matrix. Similarly, as the fracture intensity increases, rapid transport of CO$_2$ leads to high CO$_2$ concentration at the top of the reservoir. Such rapid gas transport will lead to less efficient CO$_2$ sequestration in
the matrix. As noted before, capillary imbibition and gravity drainage are important oil recovery and CO₂ storage mechanisms for fractured reservoirs. These mechanisms depend on exchange of fluids between the fracture and the matrix. However, if the flow in the fractures is rapid due to a well-connected fracture network, the residence time of injected fluids in the fracture becomes insufficient to adequately recover oil or store CO₂ in the matrix via spontaneous imbibition and gravity drainage, thereby leading to poor hydrocarbon recovery and CO₂ sequestration.

The influence of the fracture network can also be observed in the oil recovery, water cut and CO₂ storage profiles (Fig. 14). Notice that the presence of open and connected fractures in the reservoir results in lower oil recoveries (Fig. 14a), early water breakthrough (Fig. 14b), and lower fractions of CO₂ stored (Fig. 14c). The bypassing effect that leads to lower oil recovery increases as fracture intensity increases but becomes less significant at higher fracture intensities (P32 >= 0.4). This behaviour may suggest that in systems where the fracture network is very dense, above a certain threshold, variations in model output due to changes to the fracture network could be negligible thereby potentially reducing the impact of the fracture uncertainty on the model outcomes.
Fig. 13. Upscaled fracture permeability distribution with increasing regional fracture intensity of 0.05 (a) 0.1 (b) 0.2 (c) 0.4 (d) and corresponding matrix oil saturation (e, f, g, h) and CO₂ saturation (i, j, k, l) distributions after immiscible WAG injection. Notice the bypassed oil and high CO₂ concentration at the top of the model due to rapid flow of reservoir fluids.

Fig. 14. Oil recovery (a), water cut (b) and CO₂ stored (c) during immiscible WAG injection. Fractures are incorporated with dual-porosity dual-permeability models of increasing fracture intensity (P32). Fracture networks cause bypassing and act as fluid flow high ways leading to lower oil recovery, early water breakthrough and lower fraction of CO₂ stored.
3.2 Effect of fracture network geometry

At low fracture network intensity (for example, $P_{32} = 0.1$), subtle conceptual changes in the static modelling of the fracture geometry, impact the simulation results more significantly than at higher fracture network intensity (for example, $P_{32} = 0.5$). We considered three fracture geometry scenarios; (1) Regional fracture geometry (2) Fault related fracture geometry and (3) Bedding related fracture geometry. For an average fracture network intensity of 0.1, the oil recovery varies between 45%, 43% and 42%, assuming regional, fault related or bedding related fracture geometry respectively (Fig. 15a, b, c and Fig. 16a). Conversely, the oil recovery profiles are indistinguishable when the fracture network intensity is 0.5, irrespective of the specific fracture network geometry (Fig. 16d). The results indicate that the fracture intensity is a controlling parameter: Above a given fracture intensity, simulation results are largely independent on the underlying geological concept that was used to model the fracture network. Below this threshold fracture intensity, simulation results depend on the geological concepts that underpin the fracture model.

Similarly, the water cut varies between 96%, 95% and 94% (Fig. 16b), while the CO$_2$ stored varies between 12%, 13% and 14% of the pore volume assuming bedding related, fault related or regional fracture geometry respectively (Fig. 15d, e, f and Fig. 16c). The bedding related fracture system contains layer-oriented fracture permeabilities that may lead to the prevalence of high permeability layers and exacerbate flow channelling, thereby yielding the lowest estimated oil recovery and CO$_2$ stored. As noted above, at high fracture intensity, the influence of the specific fracture geometry is less distinguishable because the fracture density is so high that fractures are fully connected and form long-range high-permeability flow paths irrespective of the specific geometry (Fig. 16d, e, f).
Fig. 15. Oil saturation (a, b, c) and CO₂ saturation (d, e, f) distribution during immiscible WAG injection in the fractured carbonate reservoir with regional (a, d), fault related (b, e), and bedding related (c, f) fracture geometries. The average fracture intensity is 0.1 m²/m³ in all cases.

Fig. 16. Oil recovery (a, d), water cut (b, e) and CO₂ stored (c, f) when regional (RG), fault-related (FR) and bedding-related (BR) fracture geometry scenarios are considered. ‘P32’ refers to the “average fracture intensity”. We assume that P32 = 0.1 m²/m³ indicates low fracture intensity while P32 = 0.5 m²/m³ indicates high fracture intensity. Oil recovery and CO₂ storage profiles are less distinguishable at high fracture intensities.
Fig. 17. Oil recovery (a, d), water cut (b, e) and CO₂ storage (c, f) profiles during immiscible WAG injection. Water-wetness improves imbibition, gives highest recovery fractions and results in slower water transport; however, lower volumes of CO₂ are stored under water-wet conditions due to high capillary entry pressure. DBA refers to a depth-based approach that correlates wettability to depth while FBA refers to a facies-based approach that correlates wettability to the horizontal permeability of the grid cells based on facies types.

3.3 Effect of matrix wettability

To ensure a tractable number of simulations while investigating important fluid flow effects, we have used the regional fracture scenario with average fracture intensity of 0.1 for all subsequent simulations. Unless otherwise stated, the base case for wettability in all simulations is the single mixed-wet wettability function. In general, higher oil recovery factors are encountered in all wettability scenarios when hysteresis is employed due to reduced mobility of the CO₂ phase and better oil displacement (Fig. 17a). When matrix wettability is varied in the flow simulations, it is observed that increasing water-wetness leads to higher oil recovery, which decreases under mixed-wet conditions and further decreases in oil-wet conditions (Fig. 17a). This is due to the high imbibition potential of water-wet formations (Morrow and Mason, 2001; Schmid and Geiger, 2012, 2013).
As previously noted, spontaneous imbibition is a major recovery mechanism in fractured reservoirs and a more water-wet rock will support efficient imbibition of water from the fractures to displace oil from the matrix through a counter-current or co-current mechanism. We can also compare the imbibition efficiency using the water cut profiles (Fig. 17b). We observe that the water cut increases more rapidly in the mixed-wet and oil-wet cases compared to the water-wet case due to the more efficient imbibition in the water-wet scenario. Conversely, the fraction of CO₂ stored is significantly lower in the water-wet case compared to the mixed-wet and oil-wet cases (Fig. 17c). The low CO₂ storage fraction in the water-wet case is due to the high capillary entry pressure of water-wet rocks that makes it difficult for CO₂ to be displaced into the matrix.

Furthermore, we test the impact of multiple approaches for distributing wettability in the model using saturation functions (see fig. 6). We include three scenarios; (1) Single mixed-wet saturation function for the entire reservoir, (2) Multiple saturation functions distributed using a depth based approach where the wettability varies from oil-wet at the top to water-wet at the bottom of the reservoir and (3) Multiple saturation functions distributed using a facies based approach where the wettability is assigned based on correlation to the horizontal permeabilities of the grid cells (Fig. 17 d, e, f).

When multiple saturation functions are employed, lower oil recovery but higher CO₂ storage fractions are observed. Since wettability controls imbibition and drainage mechanisms which in turn control oil recovery and CO₂ storage, such lower oil recoveries and higher CO₂ storage fractions are not surprising. In other words, the combined effect of the multiple saturation functions depends on how the end-members (oil-wet to water-wet) have been allocated to the grid cells based on the distribution approach. In this case the combined effect of the multiple saturation functions indicates that the oil recovery efficiency is less than for the scenario with a single mixed-wet wettability. The results demonstrate the uncertainties inherent to the wettability distribution method chosen and the importance of rigorous approaches for defining and distributing the saturation functions in simulation models for evaluating CO₂ EOR and storage (e.g., Gomes, 2008; Hollis et al., 2010; Chandra et al., 2015).
3.4 Effect of Hysteresis and Residual Trapping

To gain insight into the dynamic behaviour of the reservoir in cases with and without hysteresis, we identified three observation points in the simulation model and monitored the evolution of CO₂ saturation over 20 years (Fig. 18). Observation point #1 (grid cell 64, 67, 1) and observation point #2 (grid cell 57, 16, 1) are close to injection wells in the simulation model, while observation point #3 (grid cell 71, 30, 1) is located between two faults. Choosing the observation points in this way enabled us not only to observe the evolution of CO₂ saturation paths, but also to show the influence of geological features such as faults on trapping. We observe that the CO₂ saturation distribution at the top of the reservoir when hysteresis is not considered (Fig. 18a) is higher than the CO₂ saturation at the top of the reservoir when hysteresis is considered (Fig. 18b), indicating that the CO₂ plume migration to the top of the reservoir is much slower when hysteresis is considered and residual trapping is accounted for.

Fig. 18. Matrix gas saturation distribution during WAG injection without hysteresis (a) and with hysteresis (b). Three observation points (#1, #2, #3) are shown on the simulation model where CO₂ saturation is monitored over 20 years.

When hysteresis is considered, the model predicts a trail of residual, immobile CO₂ during the migration of the plume that reduces the overall mobility of CO₂ and leads to a more conservative estimate of the CO₂ distribution at the top of the reservoir (e.g., Juanes et al., 2006; Spiteri et al., 2006; Qi et al., 2008, 2009; MacMinn et al., 2011). Lower CO₂ distribution at the reservoir top is favourable for CO₂ sequestration because it reduces the
potential of the gas to damage the cap rock and generate fissures in the cap rock which may then be conduits for CO₂ leakage to upper formations and ultimately to the atmosphere.

Fig. 19. Gas saturation profiles at observation points #1, #2, #3 (Fig. 18) under water-wet (a, d, g), mixed-wet (b, e, h) and oil-wet (c, f, i) conditions respectively. Water and CO₂ are injected during alternate cycles at equivalent rates of 1589 m³/day.

Figure 19 shows CO₂ saturation evolution at the three observation points during WAG injection under water-wet, mixed-wet and oil-wet conditions. All the observation points indicate that the difference in CO₂ saturation profiles between the models with and without hysteresis begins in the third injection cycle. In the third injection cycle (W-G-W-G), water is injected into the reservoir after a flow reversal. If hysteresis is considered, water injection after flow reversal instigates residual CO₂ immobilisation and trapping, hence, the decrease in gas saturation follows a different evolution path compared to the model where hysteresis
is not considered. Residual trapping hence reduces overall gas mobility, increases the stored
gas fraction and improves oil recovery.

On average, the CO\textsubscript{2} saturation in the matrix of the water-wet models (Fig. 19a, d, g) is
approximately 39% less than the CO\textsubscript{2} saturation in the matrix of the mixed-wet models (Fig.
19b, e, h) and 56% less than the CO\textsubscript{2} saturation in the matrix of the oil-wet models (Fig. 19c,
f, i). The difference in matrix CO\textsubscript{2} saturation can be attributed to the high capillary entry
pressure in water-wet rocks which supports spontaneous imbibition but opposes gas-oil
gravity drainage. Hence, water-wet rocks exhibit high oil recovery during imbibition but low
CO\textsubscript{2} storage during gas-oil gravity drainage. Conversely, oil-wet rocks exhibit low oil recovery
during spontaneous imbibition but higher CO\textsubscript{2} storage during gas-oil gravity drainage.

At observation point #3, the behaviour of the gas saturation profiles differs from the other
two observation points for all the wettability scenarios (Fig. 19g, h, i). This is due to its location
between two faults. We consider the faults to be fully conductive, with flow reduction
across faults occurring only due to the juxtaposition of high and low permeability layers.
Hence, only a small fraction of injected fluids reach observation point #3 due to viscous
displacement. Consequently, hysteresis and residual CO\textsubscript{2} trapping (due repeat imbibition
and drainage cycles) is limited and only observed in the water-wet scenario (due to the
relatively stronger imbibition). The mixed-wet and oil-wet cases do not show hysteresis
effects. The evolution of CO\textsubscript{2} saturation at the observation points therefore highlights the
interaction and competition between recovery/sequestration mechanisms (e.g. gravity,
capillary, viscous forces) and geological heterogeneity during CO\textsubscript{2} EOR and storage which
needs to be captured in simulation models as we have done in this study.

3.5 Effect of WAG ratio and maximum trapped CO\textsubscript{2} saturation

We now investigate the effect of the WAG ratio and maximum trapped CO\textsubscript{2} saturation on
the performance of CO\textsubscript{2} EOR and storage. The motivation is to consider what other factors
influence the optimization of CO\textsubscript{2} sequestration during EOR. Specifically, to determine what
factors can mitigate the influence of geological uncertainties and enable us to obtain the
optimum displacement strategy for a specific reservoir (e.g., Wildenschild et al., 2011;
Doster et al., 2013). We observe that when the WAG ratio varies between 1:2, 1:1, 2:1 and 4:1, the total CO₂ stored (as a percentage of the reservoir pore volume) varies between 15%, 14%, 12% and 11% respectively (Fig. 20a). This is to be expected because as the WAG ratio increases a smaller fraction of CO₂ is injected into and subsequently stored in the reservoir. More importantly, figure 20a indicates that the WAG ratio can be varied to maximize CO₂ sequestration while producing oil within economic limits. The challenge, however, is that maximizing CO₂ sequestration simultaneously competes with maximizing the oil production (Fig. 20c). Obtaining an optimal economic solution for CO₂ EOR and storage is therefore nontrivial and may require the use of advanced optimization workflows to obtain the best solution while varying the model input parameters (e.g., Queipo et al., 2005; Oladyshkin et al., 2011; Koziel and Yang, 2011; Petvipesit et al., 2014).

Similarly, we observe that if the maximum trapped CO₂ saturation varies between 0, 0.2 and 0.4, for example, due to variations in wettability, injection rates and/or the injection strategy, the total CO₂ pore volume stored varies between 13%, 15% and 16% respectively (Fig. 21b) indicating a direct link between the maximum trapped saturation and the amount of CO₂ stored in the reservoir. Figure 20d demonstrates that improving the maximum trapped CO₂ saturation can increase the total amount of CO₂ stored in the reservoir with the total oil production remaining relatively constant. We can therefore use a better understanding of the mechanism of residual trapping to optimize CO₂ sequestration within economic limits.

We evaluate the effect of the WAG ratio and maximum trapped CO₂ saturation on the net gas utilization factor (GUF). The GUF indicates the amount of CO₂ that is stored in the reservoir for every barrel of oil produced (eqn. 18). The GUF is an important sequestration and economic parameter that quantifies the amount of CO₂ that can be safely stored in the reservoir during EOR.

\[
GUF = \frac{CO₂\text{Injected} - CO₂\text{Produced}}{Oil\text{Produced}}
\] (18)

In general, higher volume of CO₂ is stored initially per barrel of oil produced (Fig. 20e, f). As the reservoir becomes gas saturated, the GUF reduces and becomes nearly constant. Figure
indicates that as the WAG ratio increases the GUF decreases. This is because higher WAG ratios produce larger quantities of oil at the expense of lower CO$_2$ storage (Fig. 20c).

Fig. 20. Total CO$_2$ stored in the reservoir when WAG ratio (a, c) and maximum trapped gas saturation (b, d) are varied. As expected, larger volume of CO$_2$ is stored with low WAG ratios or high trapped saturations. The net CO$_2$ utilisation is higher at low WAG ratios (e) and increasing maximum trapped CO$_2$ saturation (f). All simulations consider the mixed-wet wettability scenario.
Finally, figure 20f demonstrates the impact of residual trapping on the net GUF. We see that as the trapped gas fraction increases, the net GUF increases indicating that a higher fraction of CO₂ is stored in the reservoir. This direct correlation between the trapped gas fraction and the net GUF, further reaffirms the fact that a better understanding of the mechanism of trapping can be used to optimize CO₂ sequestration (during EOR) within economic limits.

4. Discussion

Reservoir simulation is an important tool for investigating the fundamental controls on fluid flow in subsurface reservoirs during CO₂ EOR and storage (e.g., Jessen et al., 2005; Qi et al., 2009; Jenkins et al., 2012; Wriedt et al., 2014). Results from reservoir simulation can be used to evaluate the reservoir’s suitability for CO₂ EOR and storage based on the influence of uncertain physical and geological parameters. Our simulation study shows that the fracture properties are a first order control on oil recovery and CO₂ storage efficiency in fractured carbonate reservoirs (Fig. 21). We find significant variations in subsurface flow behaviour when low intensity fractures are encountered compared to high intensity fractures, thereby, highlighting geological tipping points that influence simulation predictions. Hence, accurate characterisation and calibration of the hydrodynamic properties of the fracture network is essential. Calibrating simulation results based on static data with dynamic information from pressure transient, tracer and field tests can increase our understanding of a dynamically coupled fracture-matrix system. However, it should be noted that the complex interaction of fracture-matrix flow in fractured carbonate reservoirs can render the calibration of fractured carbonate reservoir models with pressure transient data difficult (Wei et al., 1998; Corbett et al., 2012; Agada et al., 2014).

We have also shown that the choice and number of saturation functions used to represent the wettability distribution can influence oil recovery and CO₂ storage predictions in fractured carbonates. It has been shown previously that accurate distribution of wettability for carbonates is a crucial aspect of carbonate reservoir characterization (e.g., Lichaa et al., 1993; Jerauld and Rathmell, 1997; Hollis et al., 2010; Chandra et al., 2015). In particular, using a single saturation function based on the assumption of uniform reservoir wettability is insufficient and the distribution of multiple saturation functions to reflect heterogeneous
wettability offers more robust results. Relative permeability hysteresis also has a significant impact on subsurface CO₂ EOR and storage, as we have demonstrated. Modelling hysteresis in detail will account for the residually trapped (immobilised) CO₂ fraction and lead to reduction of the overall CO₂ phase mobility. Hence, understanding the mechanism of residual trapping means that trapping may be optimized to obtain significant economic and environmental benefit (e.g., Wildenschild et al., 2011; Doster et al., 2013).

Fig. 21. Summary of the sensitivities affecting CO₂ EOR & Storage. Tornado chart shows the difference in the simulation results when individual parameters are varied between their minimum and maximum values. The base case for comparison is a regular five-spot pattern for WAG injection in the matrix coupled with regional fractures. The matrix wettability for the base case is “mixed-wet” while the average fracture intensity is 0.1. Hysteresis is not accounted for in the base case.

For all the sensitivities investigated, we used a traditional sensitivity analysis carried out by varying “one parameter at a time” to show that the fracture intensity, matrix wettability, fracture geometry and residual trapping are key uncertainties for CO₂ EOR and storage prediction (Fig. 21). This kind of sensitivity analysis, though very useful, could be biased because it may not fully explore the parameter space. Firstly, the tornado chart is based on the maximum and minimum parameter values considered in this study, but the end-members could differ if other scenarios are considered for given parameters (e.g., the conceptual fracture network geometry). Secondly, traditional sensitivity analysis assumes that the varied parameters are independent of each other, although in reality the parameters are often correlated. For example, matrix wettability and fracture intensity may have an interrelated rather than independent impact when controlling imbibition, drainage and residual trapping mechanisms. Recently, design of experiments (DoE) has been increasingly used as a means to set up multiple numerical simulations that maximize the amount of information acquired from a limited number of simulation runs. DoE provides a structured way to change multiple settings in order to understand the impact of the most influential and interrelated factors on CO₂ EOR and storage. Furthermore, DoE can be coupled with advanced optimization workflows to optimise and improve the economics of
We coupled the fracture network with the rock matrix using traditional DFN modelling approaches and dual continuum formulations. Employing discrete fracture and matrix models (DFM) where the fractures are explicitly represented may provide additional insights into fracture-matrix transfer processes, especially in reservoirs where flow in the matrix is significant (e.g., Matthäi et al., 2007; Haegland et al., 2009; Geiger et al., 2009). Another source of uncertainty in the dual-continuum simulations is the shape factor (embedded in the transfer function) which for classical models (Warren and Root, 1963; Gilman and Kazemi, 1983) determines the speed of recovery from the matrix, but does not adequately capture the changes in recovery speed over time. This variability in recovery speed is due to sub-grid heterogeneities that are typical for fractured carbonate reservoirs and have been shown to significantly influence multiphase flow predictions. Hence, current research efforts are tailored towards generating novel multi-rate transfer functions that account for variable recovery speeds as a result of sub-grid heterogeneities (Di Donato et al., 2007; Geiger et al., 2013; Maier et al., 2013).

A regular five-spot well pattern was chosen as the standard well placement option for all the simulations in this study. It is important to note that the chosen well placement was not final and the oil recovery and CO₂ sequestration estimates may be improved by exploring different well placement approaches. More common well placement options that may have an impact on the simulation results include inverted five-spot, direct line drive and staggered line drive well patterns. Alternatively, robust well-patter optimization which is now a standard technique in reservoir simulation may be employed to maximize CO₂ EOR and storage for a given well placement option while accounting for geological uncertainty with multiple model realisations (e.g., Bangerth et al., 2006; Oladyshkin et al., 2011; Onwunalu & Durlofsky, 2011; Petvipusit et al., 2014).
Since this study focused on short term CO₂ EOR and storage (only 20 years), we assumed that black oil simulation was sufficient to capture the short term effects of hysteresis, wettability and fracture-matrix interaction. Longer term CO₂ EOR and storage studies (approx. 100 – 1000 years) that need to capture complex flow processes such as CO₂ solubility and geochemical CO₂-rock interactions would benefit greatly from applying compositional simulations. The challenge remains that field-scale simulation of fractured carbonate reservoirs is very time consuming. Hence, it is worthwhile to investigate non-reactive CO₂ behaviour using black oil simulations prior to investigating reactive and multicomponent CO₂ behaviour using compositional simulation (e.g., Jessen et al., 2005).

5. Conclusion

The main objective of this paper was to investigate how the interplay between hysteresis, wettability and fracture-matrix exchange impacts oil recovery and CO₂ sequestration in relation to the multiscale heterogeneities that are pervasive for fractured carbonate reservoirs. We have shown that the specific fracture network geometry has a direct effect on oil recovery and CO₂ storage, especially when the fracture intensity is low. When the fracture intensity is high, the impact of varying fracture network geometry on oil recovery and CO₂ storage becomes less distinguishable. This is because the fracture density is so high that fractures are highly connected and form long-range high-permeability flow paths irrespective of the specific geometry. Thus, the fracture network properties, specifically the fracture intensity, exhibit “tipping point” behaviour that significantly influence the simulation output depending on whether the fracture intensity is low or high. We demonstrate that for a given fracture geometry, the presence of connected fractures leads to increased bypassing of the oil in the matrix by the injected fluids as the fracture intensity increases. The presence of connected fractures also leads to rapid CO₂ transport, relatively poor CO₂ sequestration and early water breakthrough.

We find that although the fracture network properties have the greatest impact on the simulations, yet the effect of wettability on CO₂ EOR and storage cannot be neglected. Water-wet reservoir conditions lead to reduced gas saturation in the matrix due to high capillary entry pressures that oppose gas oil gravity drainage. Increased imbibition in the
water-wet medium also leads to higher oil recovery during water injection cycles. Conversely, the imbibition potential is very poor in the oil-wet medium leading to much lower recovery from water injection cycles. Residual trapping of the CO₂ is more significant in water-wet rocks because snap-off occurs and gas becomes increasingly disconnected in the pore throats from the continuous CO₂ phase. Because residual trapping entails a reduction of the CO₂ mobility, it ultimately leads to higher oil recovery. Reducing the CO₂ mobility delays CO₂ breakthrough, increases the stability of gas-water mobility front and improves contact of CO₂ with residual oil, thereby ensuring better macroscopic and microscopic sweep of the reservoir while increasing the residually trapped CO₂ fraction.

Simulation of fractured carbonate reservoirs can provide valuable insights on the suitability of a given reservoir for CO₂ EOR and storage. Simulation studies can also highlight the principal physical and structural uncertainties that control oil recovery and CO₂ sequestration with a view to mitigating these uncertainties. Bypassing of oil in the matrix, rapid CO₂ migration and early water breakthrough, for example, which are due to high fracture-matrix connectivity can be reduced by increasing the viscosity of the injected fluid using polymer injection and foam flooding applications. The wetting preference of the reservoir rock may also be altered by the injection of chemicals (e.g. surfactants) to achieve maximum CO₂ EOR and storage. Hysteresis in cyclic floods must be accounted for to ensure that simulations provide robust results that can guide subsurface reservoir management. The trade-off between the volumes of CO₂ trapped and the amount of oil recovered must also be optimised in the light of economic constraints including the source and cost of CO₂ delivered to the operational site.

Acknowledgements

The authors would like to thank the ExxonMobil (FC)² Research Alliance for funding this project. Sebastian Geiger is grateful to Foundation CMG for supporting his chair in carbonate reservoir simulation. We acknowledge Computer Modelling Group, Schlumberger and Golder Associates for providing access to commercial software. The research presented
in this paper has benefitted from technical collaboration and numerous discussions with members of the former ExxonMobil (FC)² Research Alliance.

References

